A counter-intuitive mechanics and traffic flow problem solved by mathematics

Nadia Lafrenière

Université du Québec à Montréal
ISM Math Day for cegep girls, April 27th, 2019

Question

Can adding a road to a congested network cause more traffic?

What happens?

Definition

A congested network is a network in which, for at least one segment, the cost of travel (time) strictly increases with increasing traffic flow.

What happens?

Definition

A congested network is a network in which, for at least one segment, the cost of travel (time) strictly increases with increasing traffic flow.

Paradox (Dietrich Braess, 1968)

There exists congested transportation networks such that, if a link is added and if all individuals seek their best possible route, then the cost of travel for all individuals is higher than before the route was added.

[^0]
What happens?

With the (orange) highway:

What happens?

With the (orange) highway:

Minimal path: 9 minutes

What happens?

With the (orange) highway:

Minimal path: 9 minutes
Alternative paths:

- 10 minutes

What happens?

With the (orange) highway:

Minimal path: 9 minutes
Alternative paths:

- 10 minutes
- 13 minutes

What happens?

With the (orange) highway:

Minimal path: 9 minutes
Alternative paths:

- 10 minutes
- 13 minutes

What happens?

With the (orange) highway:

Minimal path: 9 minutes Alternative paths:

- 10 minutes
- 13 minutes

Minimal path: 8 minutes
(2 cars each side)

Why is it true?

- We expect car drivers to behave like fluids in a canal. However, they act egoistically.

Why is it true?

- We expect car drivers to behave like fluids in a canal. However, they act egoistically.
- In game theory, this is called the price of anarchy.

In real life...

In real life...

- Stuttgart, 1968

In real life...

- Stuttgart, 1968
- New York, for Earth Day, 1990

In real life...

- Stuttgart, 1968
- New York, for Earth Day, 1990
- Seoul, Early 2000's

In real life...

- Stuttgart, 1968
- New York, for Earth Day, 1990
- Seoul, Early 2000's
- California, 2011

In real life...

- Stuttgart, 1968
- New York, for Earth Day, 1990
- Seoul, Early 2000's
- California, 2011
- Saint-Jean-sur Richelieu (?)

Can it happen again?

In 2008, two physicists and a computer scientist identified itineraries in Boston, London and New York City that would be shorter if we would remove roads.

A physical demonstration

For the remaining skeptics...

How it works

What are the forces?

How it works

What are the forces?

- Gravity $\left(\overrightarrow{F_{g}}\right)$
- Restoring force $\left(\vec{F}_{r}\right)$

How it works

What are the forces?

- Gravity $\left(\vec{F}_{g}\right)$
- Restoring force $\left(\vec{F}_{r}\right)$

When balanced, Hooke's law says
-weight $\cdot 9.8 \mathrm{~m} / \mathrm{s}^{2}=-\vec{F}_{g}=\vec{F}_{r}=k \cdot \Delta x$.

How it works

What are the forces?

How it works

Restoring force is split into two:

$$
\overrightarrow{F_{r_{1}}}=\overrightarrow{F_{r_{2}}}=\frac{-\overrightarrow{F_{g}}}{2}
$$

and the stretching of the springs is half of what it was before.

Other occurrences

- Communication networks
- Basketball tournaments
- Electrical networks
- Study of extinct populations

[^0]: Photo: Renate Schmid

