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Interval-closed sets of a poset are a natural superset of order ideals.
We initiate the study of interval-closed sets of finite posets from
enumerative and dynamical perspectives. In particular, we use the
generalized toggle group to define rowmotion on interval-closed sets
as a product of these toggles. Our main theorem is an intricate
global characterization of rowmotion on interval-closed sets, which
we show is equivalent to the toggling definition. We also study
specific posets; we enumerate interval-closed sets of ordinal sums of
antichains, completely describe their rowmotion orbits, and prove a
homomesy result involving the signed cardinality statistic. Finally,
we study interval-closed sets of product of chains posets, proving
further results about enumeration and homomesy.
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1. Introduction

The action of rowmotion has been studied in a variety of contexts in recent
years (see e.g. [26, 6, 10, 7, 18, 1, 12, 13]). It came to prominence as an
action on order ideals of posets (equivalently, elements of distributive lat-
tices) [3], and serves as a motivating example of the cyclic sieving [20] and
homomesy [19] phenomena. Rowmotion has recently been extended to more
general types of lattices [29, 30, 5] and other kinds of objects [27].

There are two equivalent characterizations of rowmotion on order ideals;
the first was a global definition using convex-closure [8, 2]. Then, Cameron
and Fon-der-Flaass realized rowmotion on order ideals as an element of a
permutation group [3] now called the toggle group [28]. (A toggle for a given
poset element acts on an order ideal as the symmetric difference of the
element and the order ideal if the result is an order ideal, and as the identity
otherwise.) The fourth author with Williams [28] used this perspective to
show rowmotion on order ideals is conjugate to another toggle group action,
which proved easier to analyze in many cases. This yielded proofs of the
cyclic sieving phenomenon (which gives the orbit sizes explicitly) of order
ideals under rowmotion in many posets of interest, including products of
chains [m] × [n] and [m] × [n] × [2]. Propp and Roby [19] and Vorland [31]
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showed rowmotion on order ideals of these products of chains posets exhibits
the homomesy phenomenon, in which the average value of a statistic over
any orbit of an action equals the global average.

In [27], the notion of the toggle group was generalized beyond order
ideals to any family of subsets of a finite set (as the symmetric difference
of the element and the subset if the result is in the set of subsets, and as
the identity otherwise). This included structures found in posets (including
chains and antichains) and graphs (including independent sets and vertex
covers), as well as abstractions of these (matroids and convex geometries).
For each of these families, toggle commutation lemmas and toggle group
structure theorems were given, but there was no exploration of specific posets
or products of toggles. Several papers have since been written to find such
results on toggling independent sets of certain graphs [15, 14, 16, 4], but to
our knowledge, there has been little to no subsequent work on other families.

The present paper is the first dedicated study of enumeration and toggle
dynamics of the set of interval-closed sets of a poset, a natural superset of
order ideals. Using the definition of generalized toggles in [27], we directly
extend the notion of rowmotion from order ideals to interval-closed sets
(Definition 2.9). (Toggling on interval-closed sets was briefly mentioned in
[27], as an example of an interesting set of subsets on which one may apply
generalized toggles; see Remark 2.7 of the present paper for details.)

One of our main results, Theorem 2.20, gives a global construction of
interval-closed set rowmotion, which is far more complex than the analogous
statement for order ideals, and shows it is equivalent to the toggling defi-
nition. We also give a homomesy result for interval-closed sets of any poset
(Proposition 2.26). The rest of the paper studies enumeration, rowmotion
orbits, and homomesy on interval-closed sets of posets belonging to various
families.

In Section 3, we discuss chains and ordinal sums of antichains. We enu-
merate the interval-closed sets in Proposition 3.1 and Theorem 3.3 and com-
pletely characterize their rowmotion orbits in Theorems 3.2 and 3.7. We also
show in Theorem 3.14 that the global rowmotion characterization of Theo-
rem 2.20 simplifies nicely in the setting of ordinal sums of antichains. When
the size of each antichain is equal and there are an even number of these
antichains, we show in Theorem 3.21 the signed cardinality statistic exhibits
homomesy on these orbits.

In Section 4, we first prove Theorem 4.2, enumerating interval-closed sets
of products of chains of the form [2]× [n]. In Theorem 4.4, we show that the
collection of interval-closed sets of [m]× [n] with at least one element from
each chain is in bijection with order ideals of [m]× [n− 1]× [2], so they are
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enumerated by the Narayana numbers. We also show in Theorem 4.7 that
the number of maximal elements minus the number of minimal elements
is homomesic on interval-closed sets of [2] × [n] and conjecture a similar
statement for [m]× [n] (Conjecture 4.9). We also conjecture that the signed
cardinality statistic is 0-mesic with respect to rowmotion of interval-closed
sets of [m]× [n] with m+ n− 1 even and m = 2, 3 (Conjecture 4.12).

This paper contains several conjectures and open problems. Many con-
jectures were found experimentally with SageMath [24], and we encourage
researchers interested in the problems we suggest to experiment with our
code. For that purpose, we provide a worksheet containing the methods for
enumerating interval-closed sets and for acting on them by rowmotion. It can
be found at https://nadialafreniere.github.io/ICS-rowmotion-worksheet.

2. Toggling and rowmotion on interval-closed sets

2.1. Poset preliminaries

Let n ∈ N and let (P,≤P ) be a partially ordered set (poset); we drop the
subscript on the order relation when the poset is understood. All posets
in this paper are finite; we denote the number of elements in a poset P
as |P |. We follow [23, Ch. 3] for standard poset terminology and list the
most important definitions for our work below. We postpone the definition
of interval-closed set and associated notions to Section 2.2.

For a, b ∈ P , a < b means a ≤ b and a �= b. We say b covers a, denoted
a� b, if a < b and there is no p ∈ P such that a < p < b. The interval [a, b]
is the set {p ∈ P | a ≤ p ≤ b}. Given a subset S of P , a minimal element of
S is an element that covers no other element in S. A maximal element of S
is an element that is covered by no other element of S. A linear extension
of P is a total order ≤∗

P that extends ≤P , in the sense that if a ≤P b, then
a ≤∗

P b. We often write a linear extention as an ordered tuple of all poset
elements: (x1, x2, . . . , x|P |). We say P is ranked if there exists a function
rk : P → Z such that a� b implies rk(b) = rk(a) + 1. If we specify that the
smallest value attained by rk on P is 0, then for each element p ∈ P , we say
rk(p) is its rank, while the rank of the poset is the largest value attained by
rk.

A chain of P is a totally ordered subset of P . An n-element chain poset
(where all elements are distinct) is denoted as [n]. An antichain of P is a
subset of pairwise incomparable elements. An antichain poset of n distinct,
pairwise incomparable elements is denoted as n. (Note that [1] = 1.) Given
posets P and Q, their disjoint union P +Q is the poset with elements P ∪Q
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and order relation a ≤P+Q b if and only if either a, b ∈ P and a ≤P b,
or a, b ∈ Q and a ≤Q b. The ordinal sum of posets P ⊕ Q is a poset with
elements P∪Q and order relation a ≤P⊕Q b if and only if one of the following
holds: a, b ∈ P and a ≤P b, a, b ∈ Q and a ≤Q b, or a ∈ P and b ∈ Q. The
Cartesian product P ×Q is the poset with elements {(p, q) | p ∈ P, q ∈ Q}
and partial order given by (a, b) ≤P×Q (c, d) if and only if componentwise
comparisons a ≤P c and b ≤Q d are true. A subset I ⊆ P is an order ideal
if whenever b ∈ I and a ≤ b, then a ∈ I. A subset I is an order filter if
whenever a ∈ I and a ≤ b, then b ∈ I. Given a subset S of P , its complement
S is P − S. Note that the complement of an order ideal is an order filter,
and vice versa.

2.2. Interval-closed sets

We begin by defining interval-closed sets and important associated concepts.

Definition 2.1. Let P be a poset and I a subset of P . We say that I is
an interval-closed set if for all x, y ∈ I such that x ≤ y, then z ∈ I if
x ≤ z ≤ y (that is, the entire interval [x, y] is in I). Let IC(P ) denote the
set of interval-closed sets of P .

Order ideals and order filters are both examples of interval-closed sets,
though there are other types, as the following example shows.

Example 2.2. Consider the poset in Figure 1, where we have highlighted
the interval-closed set I = {5, 8, 9, 10, 11, 16}. I is an example of an interval-
closed set that is neither an order ideal nor an order filter.

Note that 5, 8, 11, and 16 could each be removed from I and we would
still have an interval-closed set (8 because it is incomparable to the other
elements of I and 5, 11, and 16 because they are minimal and maximal).
However, removing 9 or 10 from I would result in a subset of P that is not
an interval-closed set.

Definition 2.3. Given I ∈ IC(P ), let Δ(I) denote the smallest order ideal
containing I, and let ∇(I) denote the smallest order filter containing I. The
set of elements of P comparable to I is Comp(I) := ∇(I)∪Δ(I). We denote
its complement, the set of elements of P incomparable to I, by Inc(I). The
set of elements of a subset J ⊆ P which are incomparable to I is denoted
IncJ(I) := J ∩ Inc(I). Denote the minimal elements of I as Min(I) and the
maximal elements of I as Max(I). We define the floor of I to be the set of
maximal elements in Δ(I)− I, and denote it Floor(I).
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Figure 1: The interval-closed set from Examples 2.2 and 2.4.

Note that given an interval-closed set I, Max(I), Min(I), and Floor(I)
are each antichains in P .

Example 2.4. Consider again the interval-closed set I = {5, 8, 9, 10, 11, 16}
in Figure 1. Then Max(I) = {8, 16}, Min(I) = {5, 8, 11}, and Floor(I) =
{2, 3, 4, 6}. Figure 2 shows Inc(I), Δ(I), and ∇(I).

The following proposition shows we can uniquely specify an interval-
closed set by the pair of antichains (Max(I),Floor(I)).

Proposition 2.5. The map I �→ (Max(I),Floor(I)) is a bijection between
interval-closed sets of a poset P and pairs of disjoint antichains (A,B) of
P such that any element in B is in the order ideal Δ(A) generated by A.

Proof. Let f be the function on interval closed sets defined by f(I) =
(Max(I),Floor(I)) for all I in IC(P ). By definition, Floor(I) is strictly be-
low all elements of I, so in particular, Floor(I) is strictly below Max(I).
Hence, the image of f is a pair of disjoint antichains Max(I) and Floor(I)
of P such that any element in Floor(I) is in the order ideal generated by
Max(I).

Conversely, let A and B be any two disjoint antichains of P with all
elements of B in Δ(A), the order ideal generated by A. The difference of
order ideals g(A,B) := Δ(A)−Δ(B) is an interval-closed set.

This process is such that g ◦ f(I) = I and f ◦ g(A,B) = (A,B), thus f
is a bijection.

2.3. Rowmotion as a composition of toggles

Following [27, Section 3.4], we define toggling on interval-closed sets. We
then define rowmotion on interval-closed sets as a product of these toggles
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Figure 2: The interval-closed set I (circular nodes shaded in red), the ele-
ments incomparable to I Inc(I) (diamond nodes shaded in grey), the order
ideal Δ(I) (triangular nodes  shaded with yellow), and the order filter
∇(I) (inverted triangular nodes � shaded with green).

and prove several lemmas and corollaries on the action of rowmotion on
interval-closed sets of general posets.

Definition 2.6. Let x ∈ P and I ∈ IC(P ) an interval-closed set of P .

Define the toggle tx : IC(P ) → IC(P ) as follows:

• If x ∈ I, tx(I) =

{
I − {x} if I − {x} ∈ IC(P )

I otherwise.

• If x /∈ I, tx(I) =

{
I ∪ {x} if I ∪ {x} ∈ IC(P )

I otherwise.

That is, x is toggled in/out of I if doing so results in another interval-closed
set.

Remark 2.7. The paper [27] defined the interval-closed set toggle group as
the subgroup (of the symmetric groupSIC(P ) on all interval-closed sets of P )
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Figure 3: The interval-closed set I shown in red shaded circular nodes, and
Row(I) shown in blue shaded square nodes.

generated by these toggles. It also proved the following toggle commutation
lemma and partially classified the group structure of the interval-closed set
toggle group, leaving an open question about strengthening that classifica-
tion.

Lemma 2.8 ([27, Lemma 3.17]). Given x, y ∈ P , (txty)
2 = 1 if and only if

x and y are incomparable in P or (in the case x < y) if y covers x where y
is maximal and x is minimal.

We can compose toggles to create interesting actions. If we compose
toggles from top to bottom, we name this action rowmotion (as in the case
of order ideals [28]).

Definition 2.9. Given an interval-closed set I ∈ IC(P ), the rowmotion of
I, Row(I), is given by applying all toggles in the reverse order of any linear
extension.

Figure 3 shows the interval-closed set I = {5, 8, 9, 10, 11, 16} and its
rowmotion Row(I) = {3, 4, 6, 7, 9, 10, 12, 13, 14, 15, 17, 18}.

Rowmotion is well-defined by the commutativity of toggles for incom-
parable elements given in Lemma 2.8. As a bijective action on a finite set,
rowmotion partitions the set into finite, disjoint subsets called orbits given
by: O(I) = {I,Row(I), . . . ,Row−1(I)}. The order of an action is the least
common multiple of all orbit cardinalities.

The rest of this subsection discusses specifics about rowmotion on inter-
val-closed sets.

Lemma 2.10. Let I ∈ IC(P ) be an interval-closed set containing all the
maximal elements of P . Then Row(I) = I.
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Proof. Let I ∈ IC(P ) be an interval-closed set containing all the maximal
elements of P . Thus I is an order filter. Construct a reverse linear extension L
as follows: first add all maximal elements of P , then all elements in I covered
by those maximal elements, etc., until all elements of I are reached. Then add
the maximal element of I, then the elements of I covered by those maximal
elements, etc., until all elements of P are included. We compute rowmotion
by applying all toggles in the order of this reverse linear extension, so each
maximal element of P is toggled out, then all elements of I covered by these
elements, etc. Rowmotion continues untoggling all elements in I until all
are removed. At this point, we arrive at the empty interval-closed set. After
this, all remaining elements of P are successively toggled in, producing the
complement of I.

We have the following as a corollary.

Corollary 2.11. Rowmotion on IC(P ) has an orbit of size 2, namely,
{∅, P}.

Proof. By Lemma 2.10, Row(P ) = P = ∅. By definition, Row(∅) = P , as
all toggles act nontrivially.

The following lemma shows that for posets of rank at most 1, rowmotion
on interval-closed sets acts as complementation, and thus has order 2.

Lemma 2.12. Let P be a poset of rank at most one, and I ∈ IC(P ). Then
Row(I) = I, thus the order of rowmotion is 2.

Proof. Let P be a ranked poset of rank at most one, and let S be any subset
of P . Then, there exists no z ∈ S such that x, y ∈ S and x < z < y. Thus, the
interval-closed condition is trivially satisfied, so S ∈ IC(P ). Consequently,
the action of toggling becomes, for any interval-closed set I,

tx(I) =

{
I − {x} if x ∈ I

I ∪ {x} otherwise.

Since rowmotion toggles all elements of P , Row(I) = I.

Let P ∗ denote the dual of a poset P (the same elements and the reversed
partial order), and let t∗x denote the toggle of x acting on IC(P ∗). Let RowP

denote the action of rowmotion on interval-closed sets of the poset P .

Proposition 2.13. If I ∈ IC(P ), then I ∈ IC(P ∗) and tx(I) = t∗x(I).
Moreover, Row−1

P (I) = RowP ∗(I).
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Proof. If I ∈ IC(P ), I is interval-closed under the relation ≤P , thus it is
also interval-closed under the relation ≥P , which equals the relation ≤P ∗ .
Consequently, the toggle t∗x acts identically to the toggle tx.

Let |P | = n and (x1, x2, . . . , xn) be a linear extension of P . Then given
I ∈ IC(P ), RowP (I) = tx1

◦ tx2
◦ · · · ◦ txn

(I), while Row−1
P (I) = txn

◦
txn−1

◦ · · · ◦ tx1
(I). But (xn, xn−1, . . . , x1) is a linear extension of P ∗, so

RowP ∗(I) = t∗xn
◦t∗xn−1

◦· · ·◦t∗x1
(I) = txn

◦txn−1
◦· · ·◦tx1

(I) = Row−1
P (I).

The above proposition shows that as in the case of order ideals, toggling
from bottom to top is inverse rowmotion.

2.4. Rowmotion as a global action

In this subsection, we state and prove Theorem 2.20: an alternate, global
description of rowmotion on interval-closed sets.

Let P be a poset and I ∈ IC(P ). We recall the notation from Defini-
tion 2.3, which will be used in Theorem 2.20.

We also need the following new definitions.

Definition 2.14. Given an interval-closed set I ∈ IC(P ), we define:

• the ceiling of I, denoted Ceil(I), as Ceil(I) = Min(∇(I)− I), and
• the minimal elements of I under the ceiling, Min(I)∩ΔCeil(I), which
is equivalent to the set {x ∈ Min(I) | ∇({x}) ∩ Ceil(I) �= ∅}.

Example 2.15. The interval-closed set I = {5, 8, 9, 10, 11, 16}, the ceiling
of I, Ceil(I) = {14, 15, 17}, and the set of minimum elements under the
ceiling of I, Min(I) ∩ Ceil(I) = {5, 8} are illustrated in Figure 4.

The process of rowmotion on I for some arbitrary I ∈ IC(P ) proceeds
iteratively on the elements of P starting with the maximal elements and
moving down. At the point where we are determining if an element x ∈ P is
toggled in or out, i.e. whether x ∈ Row(I) or not, the decision has already
been made for all w > x in P . Thus, in asking whether x ∈ Row(I) we can
unambiguously reference whether or not w ∈ Row(I) for all w > x. This
allows for the following lemma.

Lemma 2.16. Given an interval-closed set I ∈ IC(P ), consider an element
x ∈ P − I. Rowmotion toggles x into the interval-closed set unless doing so
results in a subset of P that is not an interval-closed set, i.e. unless

(1) there exists y ∈ I and z ∈ P − I such that y < z < x, or
(2) there exists y, z ∈ P such that x < y < z with y �∈ Row(I) and

z ∈ Row(I).
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Figure 4: Left: the Ceil(I) (shaded in blue), the order ideal Δ(Ceil(I))
(triangular nodes). Right: the minimal elements of I under the ceiling
Min(I) ∩ΔCeil(I) (pentagonal nodes). The interval-closed set I is shaded
in red in both diagrams.

Similarly, for x ∈ I, rowmotion toggles x out of the interval-closed set unless

(3) there exist y, z ∈ P such that y < x < z, y ∈ I and z ∈ Row(I).

Lemmas 2.17, 2.18 and 2.19 make use of Lemma 2.16 to show certain
classes of elements are always swept into or out of Row(I). This approach is
extended in Theorem 2.20 to show that for interval-closed sets, the element-
toggle definition of rowmotion is equivalent to a global definition via set
operations.

Lemma 2.17. Given I ∈ IC(P ), and a maximal (resp. minimal) element
x of P , if x ∈ I then x /∈ Row(I).

Proof. Let x be in I for some interval-closed set I in IC(P ). Suppose x is
maximal in P . By definition of maximal, there does not exist an element
z such that x < z. Thus x is not in scenario (3) of Lemma 2.16, and x is
toggled out under rowmotion, i.e. x �∈ Row(I).

Suppose instead is a minimal element of P . Then by definition of minimal
there does not exist an element y < x and again x is not in scenario (3).
Thus x �∈ Row(I).

Lemma 2.18. Given I ∈ IC(P ), if x ∈ ∇(I)− I (i.e. x is comparable to I
from above), then x ∈ Row(I) if and only if x ∈ Ceil(I).

Proof. Let I∈IC(P ). Recall from Definition 2.14 that Ceil(I) = Min(∇(I)−
I). Consider an element x ∈ ∇(I)− I −Ceil(I). By definition of the ceiling
and order filter of I, there must exist z ∈ Ceil(I) ⊆ P − I and y ∈ I such
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that y < z < x. Thus, x is in scenario (1) of Lemma 2.16 and therefore
x �∈ Row(I).

Suppose x ∈ Ceil(I). There does not exist a y ∈ I and a z ∈ P − I such
that y < z < x, as this would imply z ∈ ∇(I)−I with z < x, but by definition
of ceiling, x is a minimal element in ∇(I)− I. Thus x is not in scenario (1).
Also by definition of ceiling, x �∈ I and for all z > x, z ∈ ∇(I)− I −Ceil(I).
Thus, as we just showed, z �∈ Row(I), and x cannot be in scenario (2).
Therefore, for all x ∈ Ceil(I), x ∈ Row(I).

Lemma 2.19. Given I ∈ IC(P ), if an element x ∈ P is incomparable to I
then x ∈ Row(I).

Proof. Let x be an element of P incomparable to I, i.e. x ∈ Inc(I). Thus for
all y < x, y �∈ I and x can not be in scenario (1) of Lemma 2.16. To show
x is not in scenario (2) we proceed by way of contradiction. Suppose there
exist y, z ∈ P such that x < y < z with y �∈ Row(I) and z ∈ Row(I). Since
x is incomparable to I, it follows that y, z �∈ I. If y were in scenario (1), that
would imply z is too, which can’t be the case since z was toggled in during
the rowmotion process. Thus, since y �∈ Row(I) it must be in scenario (2), i.e.
there must be elements y1, z1 ∈ P such that y < y1 < z1, y1 �∈ Row(I), and
z1 ∈ Row(I). As x < y, the same reasoning applied above to y and z applies
to y1, z1, and thus there must be elements y2, z2 such that y1 < y2 < z2,
y2 �∈ Row(I), and z2 ∈ Row(I), and so on. Thus the existence of even one
such y, z pair with x < y < z and y �∈ Row(I) but z ∈ Row(I) implies the
existence of infinitely many. Thus, since P is finite (by our assumption of
all posets in this paper), there does not exist any such y, z pair and x is not
in scenario (2). Therefore, for all x ∈ Inc(I), x ∈ Row(I).

The following theorem is the main result of Section 2. One may wish
to consult Example 2.22 before and while reading the proof. Theorem 3.14
gives a simplification of Theorem 2.20 in the case that the poset is an ordinal
sum of antichains. See Remark 2.21 for discussion of this result as compared
to the analogous result for order ideal rowmotion.

Theorem 2.20. Given an interval-closed set I ∈ IC(P ), rowmotion on I
is given by

Row(I) = Inc(I) ∪
(
ΔIncI

(
Ceil(I)

)
−
(
I ∪ΔCeil(I)

))
∪
(
ΔCeil(I)−Δ

(
Min(I) ∩ΔCeil(I)

))
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Proof. By Lemma 2.19, Inc(I) ⊆ Row(I). In fact, by Corollary 2.11, when
I = ∅ then Row(I) = P = Inc(I). All that remains to show is that for
elements of P comparable to I, i.e. x ∈ Comp(I), x ∈ Row(I) if and only if
x ∈ (Δ IncI(Ceil(I))−(I∪ΔCeil(I)))∪(ΔCeil(I)−Δ(Min(I)∩ΔCeil(I))).
We consider separately the set of elements comparable to I from above the
ceiling (Case 1), the set of elements comparable to I at or below the ceiling
(Case 2), and the set of elements which are in or below I but not below any
ceiling element (Case 3). These cases are illustrated in Example 2.22.

Case 1. The set of elements comparable to I from above the ceiling, i.e.
x ∈ ∇(I)− I − Ceil(I).

By Lemma 2.18, for all x ∈ ∇(I)− I − Ceil(I), x is not in Row(I). We
will show x is similarly not an element of (Δ IncI(Ceil(I))−(I∪ΔCeil(I)))∪
(ΔCeil(I)−Δ(Min(I) ∩ΔCeil(I))).

As x ∈ ∇(I) but not in I, it follows that y < x for some y ∈ I and
that for all t ∈ I, x �< t. Otherwise, we would have i, t ∈ I such that i <
x < t which violates the definition of an interval-closed set. Thus x �∈ Δ(I).
Since Δ IncI(Ceil(I)) − (I ∪ ΔCeil(I)) is a subset of Δ(I), it follows that
x �∈ ΔIncI(Ceil(I))− (I ∪ΔCeil(I)).

Similarly, as the ceiling elements are those in the set Min(∇(I) − I), it
follows that for all x ∈ ∇(I) − I − Ceil(I), x �< t for all t ∈ Ceil(I). Thus
x �∈ ΔCeil(I) and therefore x �∈ ΔCeil(I) − Δ(Min(I) ∩ ΔCeil(I)). Thus,
for all x ∈ ∇(I) − I − Ceil(I), x /∈ Row(I) and x �∈ (Δ IncI(Ceil(I)) − (I ∪
ΔCeil(I))) ∪ (ΔCeil(I)−Δ(Min(I) ∩ΔCeil(I))).

Case 2. The set of elements comparable to I at or below the ceiling, i.e.
x ∈ ΔCeil(I) ∩ Comp(I).

We will show in this case that x ∈ Row(I) unless x ∈ Δ(Min(I) ∩
ΔCeil(I)). First consider x ∈ Ceil(I). By Lemma 2.18 x ∈ Row(I). By
definition of ceiling, for all z ≥ x, z �∈ I. Thus x �∈ ΔMin(I) and therefore
not in Δ(Min(I) ∩ΔCeil(I)).

Consider x ∈ ΔCeil(I) ∩ Comp(I) − Ceil(I). As the ceiling is the set
of minimal elements in ∇(I) − I, it follows that x �∈ ∇(I) − I. As x is
comparable to I, it must be in Δ(I), and therefore either in the set x ∈
ΔCeil(I) ∩ I −Min(I) or the set x ∈ Δ(Min(I) ∩ΔCeil(I)).

If x ∈ ΔCeil(I)∩I−Min(I), then by definition of order ideal there exists
an element z ∈ Ceil(I) ⊆ Row(I) such that x < z. As x is not a minimal
element of I, there also exists an element y ∈ I such that y < x and we are
in scenario (3) of Lemma 2.16, implying x does not get toggled out of the
interval-closed set and therefore x ∈ Row(I).
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If x ∈ Δ(Min(I) ∩ ΔCeil(I)), then by definition of order ideal, there
exists an element z ∈ Ceil(I) such that x < z and z ∈ Row(I). If x ∈ Min(I)
then x ∈ I but for all y < x, y �∈ I. Thus, scenario (3) is avoided and x
gets toggled out. If x ∈ Δ(Min(I) ∩ ΔCeil(I)) − Min(I) then x �∈ I but
there exists an element y ∈ Min(I) such that x < y < z with y �∈ Row(I)
and z ∈ Row(I), thus we are in scenario (2) of Lemma 2.16 and x does not
toggle in. In either case, x �∈ Row(I).

Therefore, for all x ∈ ΔCeil(I) ∩ Comp(I), x ∈ Row(I) if and only if
x /∈ Δ(Min(I) ∩ΔCeil(I)), i.e. x ∈ ΔCeil(I)−Δ(Min(I) ∩ΔCeil(I)).

Case 3. The set of elements which are in or below I but not below any
ceiling element, i.e. x ∈ ΔIncI(Ceil(I))−ΔCeil(I).

For this case we will consider two subcases, x in I and x not in I.
Let x be an arbitrary element of (Δ IncI(Ceil(I)) − ΔCeil(I)) ∩ I, i.e.
x ∈ IncI(Ceil(I)). It follows by the definition of ceiling and order filter
that ∇({x}) ⊆ ∇(I)−Ceil(I). We proceed by induction, considering first a
maximal element m of ∇({x}). By definition of order filter, since m is max-
imal in ∇({x}) there is no element z ∈ P greater than m. Thus, if m ∈ I, it
is not in scenario (3) of Lemma 2.16, and therefore m �∈ Row(I). If m �∈ I,
then m is in ∇(I)− I −Ceil(I), and Lemma 2.18 implies m �∈ Row(I). Now
suppose by way of induction that for some t ∈ ∇({x}) it is the case that
for all z ∈ ∇({x}) such that z > t, z �∈ Row(I). As before, there are two
possible cases: t ∈ ∇(I) − I − Ceil(I), or t ∈ I. If t ∈ ∇(I) − I − Ceil(I),
then again by Lemma 2.18, t �∈ Row(I). We assumed that for all z ∈ ∇({x})
such that z > t, z �∈ Row(I). However, by definition of order filter, the set
of z ∈ ∇({x}) such that z > t is the same as the set of all z ∈ P such
that z > t. Thus, if t ∈ I, it is not in scenario (3) of Lemma 2.16, and
therefore t �∈ Row(I). Either way, t �∈ Row(I). Taking any linear extension
of P , it follows by induction on the rank of elements in ∇({x}) that for all
t ∈ ∇({x}), t �∈ Row(I), and thus x �∈ Row(I).

Now let x be an arbitrary element of (Δ IncI(Ceil(I))−ΔCeil(I))− I.
It follows that x is not in I, but by definition of Δ IncI(Ceil(I)), there is
some z ∈ IncI(Ceil(I)) such that x < z. Thus, for all y < x, y �∈ I or we
would contradict our assumption that I is an interval-closed set. Thus x is
not in scenario (1) of Lemma 2.16.

Suppose by way of contradiction that x is in scenario (2) of Lemma 2.16,
i.e. that there are elements y, z such that x < y < z, y �∈ Row(I), and
z ∈ Row(I). If such y and z exist, then there must be a pair of elements y1
and z1 such that x < y1 < z1, y1 �∈ Row(I), z1 ∈ Row(I), and y1�z1. If y1 is
in I, it must be in IncI(Ceil(I)) as otherwise x < y1 would contradiction our
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assumption that x is incomparable to Ceil(I). Similarly, if z1 ∈ I it must be
in IncI(Ceil(I)). However, since we just showed at the start of Case 3, that
for all w ∈ IncI(Ceil(I)), w and all elements of ∇({w}) are not in Row(I),
and as z1 ∈ Row(I) and z1 ∈ ∇({y1}) it follows that both z1 and y1 are
not in IncI(Ceil(I)) and thus not in I. Thus we have elements y1 < z1 in
P − I such that z1 was toggled in during rowmotion but y1 was not. As z1
could be toggled in, it follows that for all t < y1 < z1, t �∈ I. Otherwise z1
would be in scenario (1) of Lemma 2.16 and would not have been toggled
in. This implies y1 is not in scenario (1) itself, and therefore must be in
scenario (2) of Lemma 2.16. This implies the existence of a pair of elements
y2 and z2, with such that y1 < y2 < z2, y2 �∈ Row(I), z2 ∈ Row(I), and
z2 covers y2. The covering relationships and assumptions about inclusion in
Row(I) imply that y1, y2, z1, and z2 are all distinct elements. Moreover, as
x < y2 < z2, the same argument applied to y1 and z1 applies to y2 and z2,
implying the existence of another pair of distinct elements y3 and z3. Thus,
the existence of one pair of elements y, z such that x < y < z, y �∈ Row(I),
and z ∈ Row(I) implies the existence of infinitely many covering pairs yi, zi.
Since P is finite, this leads to a contradiction and thus x is not in scenario
(2) of Lemma 2.16. Therefore, for all x ∈ ΔIncI(Ceil(I)) − ΔCeil(I) − I,
x ∈ Row(I).

Thus, for all x ∈ ΔIncI(Ceil(I)) − ΔCeil(I), x ∈ Row(I) if an only if
x �∈ I, or equivalently if x ∈ ΔIncI(Ceil(I))− (I ∪ΔCeil(I)).

Having covered all possible cases, it follows that x ∈ Row(I) if and only
if x ∈ Inc(I)∪ (Δ IncI(Ceil(I))− (I ∪ΔCeil(I)))∪ (ΔCeil(I)−Δ(Min(I)∩
ΔCeil(I))).

Remark 2.21. This result should be thought of as analogous to the global
definition of rowmotion on order ideals [3, 28]. Using the notation of this
paper, if I is an order ideal of P , the result of applying order ideal rowmotion
would be Δ(Ceil(I)). The comparative level of complexity illustrates that
though the definition of interval-closed sets seems to be a mild generalization
of order ideals, the dynamics is, in many cases, much more complicated.

Example 2.22. We again turn to our example interval-closed set I =
{5, 8, 9, 10, 11, 16} to illustrate the cases and conclusions from the proof of
Theorem 2.20. Figure 5 shows how the cases considered in Theorem 2.20,
along with the elements incomparable to I, partition the poset.

Recall that Row(I) = {3, 4, 6, 7, 9, 10, 12, 13, 14, 15, 17, 18}. Examining
Figure 5, we observe that for all x ∈ Inc(I) = {7, 12, 13, 18}, x is in Row(I),
as shown in Lemma 2.19. Furthermore, the elements comparable to I from
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above the ceiling (i.e. x ∈ ∇(I)− I −Ceil(I) = {19, 20}, considered in Case
1) are comparable to I but strictly above both I and the ceiling Ceil(I).
Thus these elements are not in Inc(I)∪ (Δ IncI(Ceil(I))− (I ∪ΔCeil(I)))∪
(ΔCeil(I)−Δ(Min(I) ∩ΔCeil(I))), but also not in Row(I).

Recall that for this particular interval-closed set, the minimum elements
of I under the ceiling, Min(I)∩ΔCeil(I), are 5 and 8 (as shown in Figure 4).
Thus Δ(Min(I) ∩ΔCeil(I)) = {1, 2, 5, 8}. In Figure 5, we see that the ele-
ments comparable to I at or below the ceiling (i.e. x ∈ ΔCeil(I)∩Comp(I),
considered in Case 2 and indicated with circular nodes in Figure 5) are in
Row(I) if an only if they are not in Δ(Min(I) ∩ΔCeil(I)).

Finally, for those elements in or below I but not below any ceiling
element (i.e. x ∈ ΔIncI(Ceil(I)) − ΔCeil(I) = {6, 11, 16}, considered in
Case 3), we observe that x ∈ Row(I) if and only if x �∈ I.

1

2 3 4 5

7 8 9 10 11

6

12 13 14 15 16 17

18 19 20

Figure 5: The interval-closed set I is shaded in red, while elements of Row(I)
are shaded in blue. Elements incomparable to I, Inc(I), are indicated with
diamond nodes; elements comparable to I from above the ceiling (Case 1:
∇(I)−I−Ceil(I)), are indicated with pentagonal nodes; elements compara-
ble to I at or below the ceiling (Case 2: ΔCeil(I)∩Comp(I)), are indicated
with circular nodes; and elements which are in or below I but not below
any ceiling element (Case 3: Δ IncI(Ceil(I))−ΔCeil(I)), are indicated with
square nodes.

Before studying rowmotion on interval-closed sets of specific posets in
Sections 3 and 4, we prove in the next subsection a homomesy result that
holds for all posets.
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2.5. Toggleability homomesy

We define an analogue of the toggleability statistic of [25, Def 6.1] for
interval-closed sets and prove it is homomesic for extremal elements.

Definition 2.23. Fix a finite poset P . For each x ∈ P , define the toggleabil-
ity statistic Tx : IC(P ) → {−1, 0, 1} as follows:

Tx(I) =

⎧⎪⎨
⎪⎩
1 if x may be toggled in to I,

−1 if x may be toggled out of I,

0 otherwise.

Definition 2.24 ([19]). We say that a statistic exhibits homomesy under
some action when every orbit of that action has the same average when the
statistic is calculated over the orbit. That is,

1

|O|
∑
I∈O

stat(I) = c

for all orbits O. In this case, we say that the statistic is c-mesic.

Example 2.25. Let P be the diamond poset (the product of chains [2] ×
[2]) as in Figure 6. In this figure, each interval-closed set is listed, and the
toggleability statistic of each element appears as the label of the element.
The interval-closed sets are grouped by their rowmotion orbits. We highlight
in the figure the toggleability statistic for the unique maximal element. Note
that the average value of this statistic is 0 on each orbit, thus this is an
instance of homomesy. We show in Proposition 2.26 that this statistic is
0-mesic with respect to rowmotion on any poset.

Proposition 2.26. For any poset P , the toggleability statistic of any max-
imal (resp. minimal) element is 0-mesic under rowmotion on IC(P ).

Proof. Let x be a maximal element of a poset P . Consider the toggleability
of x within an orbit of some interval-closed set I. By Lemma 2.17, the
maximal element of P is always toggled out under rowmotion. Thus, if x is
an element of Rowj(I), then x will be toggled out and Tx(Row

j(I)) = −1.
Moreover, as the maximal element is always toggled out under rowmotion, if
x ∈ Rowj(I), it could not have been an element of Rowj−1(I) and therefore
must have been toggled in, implying Tx(Row

j−1(I)) = +1. Thus, within an
orbit, every −1 value of the toggleability statistic for a maximal element of
P is immediately preceded by at +1 value.
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1

1 1

1
Row−−−→

-1

0 0

-1

Row

0

-1 1

-1
Row−−−→

-1

1 -1

0
Row−−−→

1

-1 1

1
Row−−−→

0

1 -1

-1
Row−−−→

-1

-1 1

0

RowRow

1

1 -1

1

0

1 1

-1
Row−−−→

-1

-1 -1

1
Row−−−→

1

-1 -1

-1
Row−−−→

-1

1 1

0

RowRow

1

1 -1

1

Figure 6: Orbits of the diamond poset under rowmotion. The items in each
interval-closed set are in red, and the label of each item is the value of the
toggleability statistic for this item. Adding the values of the toggleability
of the maximal (resp. minimal) element for all the interval-closed sets of a
given orbit always gives 0, showing that the statistic is 0-mesic. The same
is not true for the elements that are neither minima nor maxima.

Since rowmotion is the composition of toggles from top to bottom, a

maximal element x of P will be toggled in every time the toggleability

statistic equals +1. And as just argued, every time a maximal value is toggled
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in, it is immediately toggled out under the next application of rowmotion.
Thus every +1 value of the toggleability statistic for a maximal element is
immediately followed by a −1 value.

Having shown every +1 value is followed by a −1 value in the following
element of the orbit, and every −1 value is preceded by at +1 value, it follows
that these values cancel out over the orbit and the toggleability statistic for
a maximal element of P is 0-mesic under rowmotion.

The previous argument applies to a maximal element of the dual poset
P ∗, and since a minimal element of P is a maximal element of P ∗, and
RowP ∗ = Row−1

P by Proposition 2.13, it follows that the toggleability statis-
tic for the minimal element of P under rowmotion is also 0-mesic. In this
case, each −1 value of the toggleability statistic is immediately followed by
a +1 value within the orbit.

Remark 2.27. Note that, unlike what happens with order ideals [25, Thm.
6.7], the toggleability statistic by non-extremal elements is not, in general,
homomesic. For example, the toggleability statistic for any element in the
middle rank of the diamond poset has average 1

2 on the first orbit of Figure 6
and 0 on the second orbit.

See Sections 3.6 and 4.2 for more homomesy results on interval-closed
sets.

3. Rowmotion on interval-closed sets of ordinal sums of
antichains

In this section, we examine posets that are ordinal sums of antichains. First,
we classify the interval-closed sets of these posets and fully describe their
orbits under rowmotion. Then, we highlight specific examples, applying our
results to those specific cases. We end the section with results on homo-
mesy.

3.1. Chain posets

Recall that [n] denotes a chain poset of n elements, or equivalently the
ordinal sum of n antichains 1⊕ 1⊕ · · · ⊕ 1.

Proposition 3.1. The cardinality of IC([n]) is
(
n
2

)
+ n+ 1.

Proof. By Proposition 2.5, the interval-closed sets of [n] are the empty set or
intervals of the form [xi, xj ] with xi ≤ xj . Thus there are

(
n
2

)
interval-closed

sets with more than a single element, n interval-closed sets consisting of a
single element, and finally the empty set.

For the author's personal use only.

For the author's personal use only.



498 Jennifer Elder et al.

Theorem 3.2. The set IC([n]) with n ≥ 0 has rowmotion order dividing
2(n+ 2) when n is odd and n+ 2 when n is even. Moreover, its rowmotion
orbit structure is described below:

• a single orbit of size 2 corresponding to O(∅) = {∅, [n]},
• �n−1

2 � orbits of size n+2. These orbits have representatives [1, k] where
1 ≤ k < n

2 , and are of the form

O
(
[1, k]

)
=

{
[1, k], [2, k+1], . . . , [n− k+1, n], [1, n− k], . . . [k+1, n]

}
,

• and when n is even, a single orbit of size n+2
2 of the form

O
([

1,
n

2

])
=

{[
1,

n

2

]
,

[
2,

n

2
+ 1

]
, . . . ,

[
n

2
+ 1, n

]}
.

Proof. Fix n ≥ 0. Label the elements of the chain poset [n] as 1, 2, . . . , n.
By Corollary 2.11, there is one rowmotion orbit of size 2, consisting of

the empty set and the whole chain poset [n].
Let I = [1, k] be a k-element order ideal with k < n

2 . Then Row(I) =
[2, k + 1] is the k-element interval-closed set with maximal element of rank
one greater than that of I. Successive applications of Row continue to shift
the k-elements up one rank until the interval-closed set contains the maximal
element of the poset. That is, the interval-closed set is [n − k + 1, n]. Call
this set J . Moving from I to J contributes n− k + 1 elements to the orbit.
By Lemma 2.10, applying Row to J returns the complement J = [1, n− k],
which is an (n − k)-element order ideal. The process repeats on this order
ideal, contributing an additional k + 1 elements to the orbit until we again
reach an interval-closed set containing the maximal element of the poset.
This set is [k+1, n], whose complement is I. Thus, the orbit has size n+2.
As [1, k] and [1, n − k] are contained in the same orbit, we note that there
are �n−1

2 � choices for k when selecting a representative of the form [1, k] that
will produce these orbits of size n+ 2.

When n is even, consider I = [1, n2 ], the
n
2 -element order ideal. The orbit

of this interval-closed set under Row is similar to the case above, except
J = [n2 +1, n], so the complement J = Row(J) is the original interval-closed
set I. In this case, the orbit has size n

2 + 1.
Using Theorem 3.1, we see that all I ∈ IC([n]) are contained in one

of the orbits described above. If n is odd, the number of elements in these
orbits is 2+ n−1

2 (n+2) =
(
n
2

)
+n+1, and if n is even, the number of elements

in these orbits is 2 + n−2
2 (n+ 2) + n+2

2 =
(
n
2

)
+ n+ 1.

Thus, the order of rowmotion on chains [n] is 2 when n = 1 or 2, n+ 2
when n ≥ 4 is even, and 2(n+ 2) when n ≥ 3 is odd.
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3.2. Ordinal sums of antichains

In this subsection, we study a generalization of the chain poset in which
all elements in each rank are comparable with all elements of every other
rank. This is the ordinal sum of antichains a1⊕a2⊕· · ·⊕an, which includes
ai elements in the ith antichain. Our main result is Theorem 3.7, which
completely describes the rowmotion orbits of this family of posets and shows
that the order of rowmotion depends only on n, not the number of elements
in each rank.

We begin by counting the interval-closed sets of a1 ⊕ a2 ⊕ · · · ⊕ an.

Theorem 3.3. The cardinality of IC(a1⊕a2⊕· · ·⊕an) is 1+
∑

1≤i≤n(2
ai −

1) +
∑

1≤i<j≤n(2
ai − 1)(2aj − 1). This consists of the following:

• the empty set ∅,
• subsets of size k within a single antichain ai,
• and subsets consisting of some non-empty subset of size k of ai, some
non-empty subset of size l of aj with i < j, and all elements of ar with
i < r < j.

Proof. Consider P = a1 ⊕ a2⊕ · · · ⊕ an. If I ∈ IC(P ) contains any elements
of ai and any elements of aj with i < j, then it must contain all elements
of ar for all i < r < j. Thus elements of IC(P ) are either the empty set,
non-empty subsets of a single ai, of which there are

∑
1≤i≤n(2

ai − 1), or
non-empty subsets of two distinct ai and aj along with all elements of ar
for i < r < j, of which there are

∑
1≤i<j≤n(2

ai − 1)(2aj − 1).

We have the following as a corollary of Lemma 2.12.

Corollary 3.4. Consider P = a1 or P = a1 ⊕ a2. Then, any subset of P
is an interval-closed set. Furthermore, Row(I) = I for any I ∈ IC(P ), and
rowmotion has order 2.

We now determine the rowmotion orbits of IC(a1 ⊕ a2 ⊕ · · · ⊕ an) for
n ≥ 3. We use the following definition and lemma.

Definition 3.5. For I ∈ IC(a1 ⊕ a2 ⊕ · · · ⊕ an), we denote I as
(
ai

k

)
if I

is equal to a non-empty proper subset of ai of size k, and [
(
ai

k

)
,
(aj

l

)
] if I

consists of some non-empty proper subset of size k of ai, some non-empty
proper subset of size l of aj with i < j, and all elements of ar for all i < r < j.
We use ai if I is a single antichain within the ordinal sum, [ai,

(aj

l

)
] if I is

a non-empty proper subset of some aj and all elements of ar for i ≤ r < j,
[
(
ai

k

)
,aj ] if I is a non-empty proper subset of some ai and all elements of ar
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for i < r ≤ j, and [ai,aj ] if I consists of all elements ar for i ≤ r ≤ j. We

use
(
ai

k

)
to denote the set complement ai −

(
ai

k

)
within an antichain. Thus

[
(
ai

k

)
,
(aj

l

)
] denotes the interval-closed set consisting of the elements ai−

(
ai

k

)
,

aj −
(aj

l

)
, and ar for all i < r < j.

Lemma 3.6. Let f be the map that takes ai to the single element i and
[ai,aj ] to the interval [i, j] in the chain poset [n]. Rowmotion commutes
with this map, that is, f(Row(I)) = Row(f(I)).

Proof. Each element in the rowmotion orbit of [ai,aj ] where i ≤ j contains
only completely full ranks forming an interval-closed set, or more precisely
O([ai,aj ]) = {[ai,aj ], [ai+1,aj+1], . . . , [ai+n−j ,an], . . . [ai−1,aj−1]}. There-
fore, we can either perform rowmotion on [ai,aj ], and then look at the
related interval-closed set in [n], or we can first map [ai,aj ] to [i, j], and
then perform rowmotion.

Theorem 3.7. Let n ≥ 3. The set IC(a1 ⊕ a2 ⊕ · · · ⊕ an) has rowmotion
order 2n(n+ 2) when n is odd and n(n+ 2)/2 when n is even. Moreover, a
complete description of its rowmotion orbit structure is below:

• 1+1
2

∑
1≤i<j≤n(2

ai−2)(2aj−2) orbits of size 2, corresponding to {∅, P},
and orbits with representatives [

(
ai

k

)
,
(aj

l

)
], which are of the form,

O
([(

ai
k

)
,

(
aj
l

)])
=

{[(
ai
k

)
,

(
aj
l

)]
,

[(
ai
k

)
,

(
aj
l

)]}
,

• �n−1
2 � orbits of size n+2, with representatives [a1,aj ] with j < n

2 , and
are of the form

O
(
[a1,ak]

)
=

{
[a1,ak], [a2,ak+1], . . . , [an−k+1,an], [a1,an−k], . . . [ak+1,an]

}
,

• 1 orbit of size n+2
2 when n is even, with representative [a1,an/2], of

the form

O
(
[a1,an/2]

)
=

{
[a1,an/2], [an/2+1,an]

}
,

•
∑

1≤i≤n(2
ai−1−1) orbits of size 2n when n is odd and

∑
1≤i≤n(2

ai −2)

orbits of size n when n is even, with representatives
(
ai

k

)
in both cases,

of the form
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O
((

ai
k

))
=

{(
ai
k

)
,

[(
ai
k

)
,ai+1

]
,

[(
ai
k

)
,ai+2

]
, . . . , [x,an], [a1, x],

. . . ,

[
ai−1,

(
ai
k

)]}
,

where x =
(
ai

k

)
if n− i is even and x =

(
ai

k

)
if n− i is odd.

Proof. Let P = a1 ⊕ a2 ⊕ · · · ⊕ an and n ≥ 3. If an interval-closed set
in P contains elements from 3 or more antichains, these antichains must
be adjacent in the poset, and all elements of the interior antichains must
be completely included. We classify the orbit structure of rowmotion on
IC(P ) by cases according to the number of partial antichains included in
the interval-closed sets.

Case 1. Interval-closed sets containing only full antichains.

Consider the case of interval-closed sets I of the form ai or [ai,aj ]. That
is, I contains all elements of each ak where i ≤ k ≤ j. Let f be the map
that takes ai to the single element i and [ai,aj ] to the interval [i, j] in the
chain poset [n]. By Lemma 3.6, rowmotion commutes with this map.

Using Theorem 3.2 on [n] allows us to find the full orbit O(I) for each
I ∈ IC(P ) considered in this case. That is, we have an orbit of size 2
containing {∅, P}, �n−1

2 � orbits of size n+ 2, and if n is even, an additional
orbit of size n+2

2 .

Case 2. Interval-closed sets containing one partial antichain and possibly
other complete antichains.

Consider I =
(
ai

k

)
. Then, Row(I) =

(
ai

k

)
⊕ ai+1, where

(
ai

k

)
denotes

the complement ai −
(
ai

k

)
, and repeated applications of rowmotion continue

to add all elements of the subsequent rank while alternating between the

elements
(
ai

k

)
and

(
ai

k

)
. Thus Row2(I) = [

(
ai

k

)
,ai+2], Row

3(I) = [
(
ai

k

)
,ai+3]

and so forth until we reach Rown−i(I) = [x,an], where x =
(
ai

k

)
if n − i is

even and x =
(
ai

k

)
if n− i is odd. At this point, applying rowmotion gives us

the complement Rown−i+1(I) = [a1, x]. From here, subsequent applications
of Row remove elements of minimal rank while alternating between x and
x, thus Rown−i+2(I) = [a2, x],Row

n−i+3(I) = [a3, x], and so on. After n

iterations we have Rown(I) =
(
ai

k

)
= I if n is even, and Rown(I) =

(
ai

k

)
if

n is odd. In the case when n is odd, an additional n applications of Row
means returning to I. Thus O(

(
ai

k

)
) has size n when n is even and 2n when

n is odd.
Moreover, we observe that all interval-closed sets containing one partial

antichain are included in these orbits. When n is even, each of these or-
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bits has a unique representative of the form I =
(
ai

k

)
, while when n is odd,

both
(
ai

k

)
and

(
ai

k

)
appear in the same orbit. Given there are

∑
1≤i≤n(2

ai−2)

interval-closed sets of the form I =
(
ai

k

)
, when n is even we have

∑
1≤i≤n(2

ai−
2) orbits of size n, and when n is odd we have half this many,

∑
1≤i≤n(2

ai−1−
1), orbits of size 2n.

Case 3. Interval-closed sets containing two partial antichains and possibly

other complete antichains.

Consider a fixed interval-closed set I = [
(
ai

k

)
,
(aj

l

)
], where i �= j. Any

interval-closed set of a1 ⊕ a2 ⊕ · · · ⊕ an with two partial antichains has this

form. Then, I is bounded above (resp. below) by a non-empty proper subset

of the antichain aj (resp. ai). Under application of rowmotion, all elements

greater than those in aj are not toggled into I, as there are elements of

aj smaller than them not in I that are covers of elements of I, in other

words they in are in scenario (1) of Lemma 2.16. Similarly, elements smaller

than those in ai are in scenario (2) and are not toggled into I, as there are

elements of ai greater than them not in I that are covered by elements of I.

Thus, Row(I) remains bounded above by aj and below by ai. In each of

these ranks, rowmotion acts by returning the complements
(aj

l

)
and

(
ai

k

)
.

Finally, the elements strictly between ai and aj are not toggled out of I,

since there are larger elements in Row(I), the elements in
(aj

l

)
added under

rowmotion, and smaller elements in I, the elements of
(
ai

k

)
not yet removed

by rowmotion. Thus, the orbit is {[
(
ai

k

)
,
(aj

l

)
], [
(
ai

k

)
,
(aj

l

)
]}. Hence, I is in an

orbit of size 2. There is a total of
∑

1≤i<j≤n(2
ai − 2)(2aj − 2) interval-closed

sets of the form [
(
ai

k

)
,
(aj

l

)
] with i �= j, which means that the number of

orbits that contain them is 1
2

∑
1≤i<j≤n(2

ai − 2)(2aj − 2).

By Theorem 3.3 and counting elements in these various orbits, all I ∈
IC(P ) are contained in one of the orbits described above. So the order of

rowmotion on ordinal sums of n antichains is lcm(2, n+ 2, 2n) = 2n(n+ 2)

when n is odd, and lcm(2, n+ 2, n+2
2 , n) = n(n+ 2)/2 when n is even.

Example 3.8. We end this subsection by illustrating some examples of the

orbits of P = 2⊕ 3⊕ 1⊕ 4.

There are three different types of orbits.

1. The orbits of size two, which include {∅, P} and non-trivial orbits

consisting of interval-closed sets with both a minimal and (different)

maximal rank with partially full antichains.
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Row−−−→
←−−−
Row

2. The orbits of size n+2 and a single orbit of size n+2
2 (since n is even),

which consist of interval-closed sets that are made up of consecutive
full antichains, excluding the full poset.

Row Row Row Row Row

Row

3. Lastly, the orbits of size n, which consist of interval-closed sets with a
single partially full antichain and possibly other complete antichains.

Row−−−→ Row−−−→ Row−−−→

Row

3.3. Stacks of altered diamonds

In this subsection, we focus on examples of specific ordinal sum posets.
Specifically, the family we call stacked altered diamond posets. These posets
are generated using the construction of series-parallel posets from [23], which
are posets created from smaller posets through disjoint unions and ordinal
sums. A diamond poset is the ordinal sum 1 ⊕ 2 ⊕ 1, and a more general
altered diamond is the ordinal sum 1⊕m⊕ 1.

Let D(n,m) = 1 ⊕ m ⊕ 1 ⊕ · · · ⊕ m ⊕ 1, where n is the number of
summands. We can view this as stacking n−1

2 copies of an altered diamond
1 ⊕m ⊕ 1 where m ≥ 2. Alternatively, we can write D(n,m) = a1 ⊕ a2 ⊕
· · · ⊕ an with ai = 1 for i odd, and ai = m for i even.
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For example, we have D(5, 2) below.

For this family of ordinal sums, we have the following corollaries of The-
orems 3.3 and 3.7 respectively.

Corollary 3.9. Let n≥3 be odd, and m ≥ 2. The cardinality of IC(D(n,m))
is

8 + (n+ 1)(n+ 3)

8
+

(n− 1)(n+ 3)

4

(
2m − 1

)
+

(n− 3)(n− 1)

8

(
2m − 1

)2
This consists of the following:

• the empty set ∅,
• non-empty subsets of size k within a single antichain ai,
• and subsets consisting of some non-empty subset of size k of ai, some
non-empty subset of size l of aj, with i < j, and all elements of ar for
all i < r < j.

Proof. Consider D(n,m) = 1 ⊕ m ⊕ 1 ⊕ · · · ⊕ m ⊕ 1. From Theorem 3.3,
we have a formula for the cardinality of IC(D(n,m)) split into cases based
on the number of antichains contributing to the interval-closed set: no an-
tichains, a single antichains, or more than one antichain.

• No antichains: There is one interval-closed set of this type, the empty
set.

• A single antichain: There are n+1
2 interval-closed sets consisting of one

full ai with i odd, and n−1
2 (2m − 1) interval-closed sets consisting of a

non-empty subset of ai with i even.
• More than one antichain: Let ai be the antichain of smallest rank
contributing elements and aj the antichain of largest rank. If both i

and j are even, then we have
(n−1

2

2

)
(2m − 1)2 possibilities for interval-

closed sets of this type. If both are odd, we have
(n+1

2

2

)
possibilities,

and if they differ in parity we have n−1
2

n+1
2 (2m − 1) possibilities.
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All together, the cardinality of IC(D(n,m)) is given by

1+
n+ 1

2
+
n− 1

2

(
2m−1

)
+

(n−1
2

2

)(
2m−1

)2
+

(n+1
2

2

)
+
n− 1

2

n+ 1

2

(
2m−1

)
.

Simplifying this calculation, we have[
1 +

n+ 1

2
+

(n+1
2

2

)]
+

[
n− 1

2

(
2m − 1

)
+

n− 1

2

n+ 1

2

(
2m − 1

)]

+

(n−1
2

2

)(
2m − 1

)2
=

8 + (n+ 1)(n+ 3)

8
+

(n− 1)(n+ 3)

4

(
2m − 1

)
+

(n− 3)(n− 1)

8

(
2m − 1

)2
as desired.

Corollary 3.10. Let n ≥ 3 be odd, and m ≥ 2. The set IC(D(n,m))
has rowmotion order 2n(n + 2). Moreover, a complete description of its
rowmotion orbit structure is below:

• 1+ (n−3)(n−1)
8 (2m−1 − 1)(2m − 2) orbits of size 2, corresponding to the

orbit of ∅, and orbits with representatives of the form [
(
ai

k

)
,
(aj

l

)
] with

i �= j even,
• n−1

2 orbits of size n+ 2, with representatives of the form [a1,aj ] with
j < n

2 ,
• n−1

2 (2m−1 − 1) orbits of size 2n, with representatives of the form
(
ai

k

)
with i even.

Proof. Consider D(n,m) = 1⊕m⊕1⊕· · ·⊕m⊕1, with n ≥ 3 odd. We can
use the formulas provided in Theorem 3.7 to find the complete descriptions
of the rowmotion orbit structure. As before, there are only two sizes for the
antichains ai: ai = 1 for i odd, and ai = m for i even. This fact allows us to
simplify the calculations significantly.

We have

1 +
∑

1≤i<j≤n

(
2ai−1 − 1

)(
2aj − 2

)
= 1 +

∑
1≤i<j≤n
i,j even

(
2m−1 − 1

)(
2m − 2

)
.

Thus, there are

1 +

(n−1
2

2

)(
2m−1 − 1

)(
2m − 2

)
= 1 +

(n− 3)(n− 1)

8

(
2m−1 − 1

)(
2m − 2

)
orbits of size 2.
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Similarly, ∑
1≤i≤n

(
2ai−1 − 1

)
=

∑
1≤i≤n
i even

(
2m−1 − 1

)
,

so there are n−1
2 (2m−1 − 1) orbits of size 2n

As n is always odd, the only orbits with representatives of the form
[ai,aj ] are of size n+2 and there remain n−1

2 of them as these orbits depend
only on the rank of the poset and not the sizes of the antichains.

Finally, the order of rowmotion is inherited directly from Theorem 3.7.

Example 3.11. Consider the three different types of orbits for D(7, 3).

1. The orbits of size two, which include the orbit of ∅ and non-trivial
orbits consisting of interval-closed sets with both a minimal and (dif-
ferent) maximal rank with partially full antichains.

Row

Row

2. The orbits of size n + 2, which consist of interval-closed sets that are
made up of consecutive full antichains, excluding the full poset.

Row Row Row Row Row Row Row Row

Row

3. Lastly, the orbits of size 2n, which consist of interval-closed sets with
a single antichain that is partially full and possibly other complete
antichains.
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Row Row Row Row Row Row Row Row

Row Row Row Row Row Row

3.4. Ordinal sums of repeated antichains

In this subsection, we consider ordinal sums of the form
⊕n

i=1m. That is,
ordinal sums where each rank has antichains of the same size.

Corollary 3.12. Let n ≥ 3, and m ≥ 2. The cardinality of IC(
⊕n

i=1m) is

1 + n
(
2m − 1

)
+

(
n

2

)(
2m − 1

)2
.

Proof. Consider
⊕n

i=1m. From Theorem 3.3, we have a formula for the
cardinality of IC(

⊕n
i=1m) split into cases based on the number of antichains

contributing to the interval-closed set: no antichains, a single antichain, or
more than one antichain.

For
⊕n

i=1m, there is only one size for the antichains. Thus ai = m for
all i. Using this information, we have the following:

• No antichains: there is one element of this type, the empty set.
• A single antichain: there are n(2m − 1) elements of this type.
• More than one antichain: there are

(
n
2

)
(2m− 1)2 elements of this type.

Summing these, we get the cardinality of IC(
⊕n

i=1m).

Corollary 3.13. Let n ≥ 3, and denote mi as the antichain of rank i+ 1.
The set IC(

⊕n
i=1m) has rowmotion order 2n(n + 2) when n is odd and
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n(n+2)/2 when n is even. Moreover, a complete description of its rowmotion
orbit structure is below:

• 1 + 1
2

(
n
2

)
(2m − 2)2 orbits of size 2, corresponding to {∅, P} and the

orbits with representatives of the form [
(
mi

k

)
,
(mj

l

)
],

• �n−1
2 � orbits of size n + 2, with representatives of the form [m1,mj ]

with j < n
2 ,

• An orbit of size n+2
2 when n is even, having a representative [m1,mn/2],

• n(2m−1 − 1) orbits of size 2n when n is odd, and n(2m − 2) orbits
of size n if n is even, with representatives of the form

(
mi

k

)
in both

cases.

Proof. Consider
⊕n

i=1m. We can use the formulas provided in Theorem 3.7
to find the complete descriptions of the rowmotion orbit structures. As all
antichains are of size m, we can simplify the calculations significantly.

We have

1 +
1

2

∑
1≤i<j≤n

(
2ai − 2

)(
2aj − 2

)
= 1 +

1

2

∑
1≤i<j≤n

(
2m − 2

)2
.

Thus, there are 1 + 1
2

(
n
2

)
(2m − 2)2 orbits of size 2.

Similarly, ∑
1≤i≤n

(
2ai − 2

)
=

∑
1≤i≤n

(
2m − 2

)
,

so there are n
2 (2

m − 2) orbits of size 2n when n is odd and n(2m − 2) orbits
of size n when n is even.

As the �n−1
2 � orbits of size n+ 2, and the single orbit of size n+2

2 when
n is even, depend only on the number of ranks, and not the size of the
antichains, these remain unchanged.

Finally, the order of rowmotion is inherited directly from Theorem 3.7.

3.5. Rowmotion as a global action on ordinal sums of antichains

Next, we examine how the alternative definition of rowmotion given in The-
orem 2.20 simplifies when working with ordinal sums of antichains. Exam-
ple 3.15 illustrates the categories of interval-closed sets considered in the
proof of Theorem 3.14. The reader is encouraged to refer to this example
while processing the proof.
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Theorem 3.14. Let P = a1⊕a2⊕· · ·⊕an and I ∈ IC(P ). Then rowmotion

on I is given as

Row(I) =

{
I if I = ∅, an ⊆ I, or I ⊆ an,

ΔCeil(I)−ΔMin(I) otherwise.

Proof. Consider I ∈ IC(P ) where P = a1⊕a2⊕· · ·⊕an. Corollary 2.11 and

Lemma 2.10 give the result Row(I) = I when I = ∅ and an ⊆ I, respectively.

For all other cases, we start with the formula from Theorem 2.20.

Consider the case I ⊆ an, i.e. I =
(
an

k

)
using the notation of Defini-

tion 3.5. In this case ∇(I) = I, implying Ceil(I) and ΔCeil(I)−Δ(Min(I)∩
ΔCeil(I)) both equal the empty set. Furthermore, Inc(I) =

(
an

k

)
and

IncI(Ceil(I)) = I. Thus the equation from Theorem 2.20 becomes

Row(I) =

(
an
k

)
∪ (ΔI − I) ∪ ∅.

Since I =
(
an

k

)
, ΔI − I = [a1,an−1] and

(
an

k

)
∪ (ΔI − I) = [a1,

(
an

k

)
] = I.

By Theorem 3.3, all other interval-closed sets of a1 ⊕ a2 ⊕ · · · ⊕ an fall

into one of the following three categories.

1. Interval closed sets of the form aj , [ai,aj ], or [
(
ai

k

)
,aj ] with i < j < n,

2. Interval closed sets of the form
(aj

l

)
with j < n,

3. Interval closed sets of the form [ai,
(aj

l

)
] or [

(
ai

k

)
,
(aj

l

)
] with i < j ≤ n.

Consider interval-closed sets of the form aj , [ai,aj ], or [
(
ai

k

)
,aj ], with

i < j < n. It follows by the ordinal sum of antichains construction that

Inc(I) = ∅, Ceil(I) = aj+1, IncI(Ceil(I)) = ∅, and Min(I) ∩ ΔCeil(I) =

Min(I). Substituting these values into the formula from Theorem 2.20 we

find

Row(I) = ∅ ∪ ∅ ∪
(
ΔCeil(I)−ΔMin(I)

)
= ΔCeil(I)−ΔMin(I).

For interval-closed sets of the form I =
(aj

l

)
with j < n, we find Inc(I) =(aj

l

)
. Once again, however, Ceil(I) = aj+1, IncI(Ceil(I)) = ∅, and Min(I) ∩

ΔCeil(I) = Min(I). Thus, the formula from Theorem 2.20 simplifies to

Row(I) =

(
aj
l

)
∪ ∅ ∪

(
ΔCeil(I)−ΔMin(I)

)
.
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As Min(I) = I in this case,
(aj

l

)
is disjoint from ΔMin(I) but a subset of

ΔCeil(I). Therefore
(aj

l

)
∪∅∪(ΔCeil(I)−ΔMin(I)) = ΔCeil(I)−ΔMin(I).

A slightly more complex computation finds the same result for interval-
closed sets of the form [ai,

(aj

l

)
] or [

(
ai

k

)
,
(aj

l

)
], with i < j ≤ n. For I in

this category, Inc(I) = ∅, Ceil(I) =
(aj

l

)
, and IncI(Ceil(I)) =

(aj

l

)
=

Max(I). Thus ΔCeil(I) = [a1,
(aj

l

)
] and Min(I) ∩ ΔCeil(I) = Min(I).

Moreover Δ IncI(Ceil(I)) = ΔI, which is a subset of I ∪ ΔCeil(I), and
Δ IncI(Ceil(I))− (I ∪ΔCeil(I)) = ∅. By Theorem 2.20,

Row(I) = ΔCeil(I)−ΔMin(I).

Example 3.15. Let P = 2 ⊕ 4 ⊕ 2 ⊕ 4. Figures 7–10 illustrate the cat-
egories of interval-closed sets considered in the proof of Theorem 3.14. In
each figure, the interval closed set I is shown with red nodes followed by
Row(I) shown with blue nodes. The minimum elements of I are shown with
pentagonal nodes. Where existent, the ceiling of I is indicated with trian-
gular shaped nodes and the elements incomparable to I are indicated with
diamond shaped nodes.

3.6. Signed cardinality homomesy

Unlike in the case of order ideals, chains (and as we’ll see in Section 4.2,
products of chains) do not in general exhibit homomesy with respect to the
cardinality statistic.

Proposition 3.16. The set IC([n]) with n ≥ 3 under rowmotion does not
exhibit homomesy with respect to the cardinality statistic. Moreover, the av-
erage cardinality for each rowmotion orbit is as follows:

• the orbit {∅, [n]} has average cardinality n
2 ,

• the �n−1
2 � orbits of size n + 2 have average cardinality 2k(n−k)+n

n+2 for
1 ≤ k < n

2 ,
• and when n is even, the single orbit of size n+2

2 has average cardinal-
ity n

2 .

Proof. We begin by proving the average cardinality counts. The average
cardinality of {∅, [n]} is n

2 . By Theorem 3.2, when n is even there is a single
orbit of size n+2

2 of the form O([1, n2 ]) = {[1, n2 ], [2,
n
2 + 1], . . . , [n2 + 1, n]}.

Each interval-closed set in this orbit has cardinality n
2 , thus the average is

again n
2 .
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a1,1 a1,2

a2,1 a2,2 a2,3 a2,4

a3,1 a3,2

a4,1 a4,2 a4,3 a4,4

Row−−−→

a1,1 a1,2

a2,1 a2,2 a2,3 a2,4

a3,1 a3,2

a4,1 a4,2 a4,3 a4,4

Figure 7: I ⊂ an, i.e. I =
(
an

k

)
, and Row(I) = I.

a1,1 a1,2

a2,1 a2,2 a2,3 a2,4

a3,1 a3,2

a4,1 a4,2 a4,3 a4,4

Row−−−→

a1,1 a1,2

a2,1 a2,2 a2,3 a2,4

a3,1 a3,2

a4,1 a4,2 a4,3 a4,4

Figure 8: I = [
(
ai

k

)
,aj ] with i < j < n (Category (1)), and Row(I) =

ΔCeil(I)−ΔMin(I).

By Theorem 3.2, when n ≥ 3 there are �n−1
2 � orbits of size n+2 having

the form O([1, k]) = {[1, k], [2, k+1], . . . , [n−k+1, n], [1, n−k], . . . , [k+1, n]}
for any k < n/2. These orbits have n−k+1 interval-closed sets of cardinality
k and k + 1 interval-closed sets of cardinality n − k. The sum of these
cardinalities is 2nk − 2k2 + n, and the average over the orbit is 2nk−2k2+n

n+2 .
For n = 1, 2, there are no orbits of size n+2, and homomesy holds. But

for n = 3, we have an orbit of size 5 with average cardinality 7
5 , as well as

an orbit of size 2 with average cardinality 3
2 . Thus the cardinality statistic

is not homomesic.

Note that since the values 2k(n−k)+n
n+2 differ for various values of k in

1 ≤ k < n
2 , interval-closed sets of a chain are not generally homometric

(meaning orbit averages over orbits of the same size are not necessarily
equal [9]).
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a1,1 a1,2

a2,1 a2,2 a2,3 a2,4

a3,1 a3,2

a4,1 a4,2 a4,3 a4,4

Row−−−→

a1,1 a1,2

a2,1 a2,2 a2,3 a2,4

a3,1 a3,2

a4,1 a4,2 a4,3 a4,4

Figure 9: I =
(aj

l

)
with j < n (Category (2)), and Row(I) = ΔCeil(I) −

ΔMin(I).

a1,1 a1,2

a2,1 a2,2 a2,3 a2,4

a3,1 a3,2

a4,1 a4,2 a4,3 a4,4

Row−−−→

a1,1 a1,2

a2,1 a2,2 a2,3 a2,4

a3,1 a3,2

a4,1 a4,2 a4,3 a4,4

Figure 10: I = [
(
ai

k

)
,
(aj

l

)
] with i < j ≤ n (Category (3)), and Row(I) =

ΔCeil(I)−ΔMin(I).

Unlike cardinality, signed cardinality, does exhibit homomesy for ordinal

sums of antichains under certain conditions; however, there are still many

cases where homomesy does not hold.

Definition 3.17. Fix a finite poset P . For each x ∈ P , define the signed

cardinality statistic SC(x) : P → {−1, 1} as follows:

SC(x) =

{
1 if rk(x) is even,

−1 if rk(x) is odd.

For an interval-closed set I, SC(I) =
∑

x∈I SC(x).
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Proposition 3.18. The signed cardinality statistic exhibits homomesy with

respect to rowmotion on the chain poset P = [n] when n is even.

Proof. Suppose n is even. By Theorem 3.2, the orbits of IC([n]) are: {∅, [n]},
the orbits O([1, k]) of size n + 2 for k < n/2, and the orbit O([1, n/2]) of

size n
2 + 1.

Since n is even, the signed cardinality of [n] is zero, thus the average of

the signed cardinality over the orbit {∅, [n]} is 0. For k < n/2, consider the

orbit O([1, k]) = {[1, k], [2, k+1], . . . , [n− k+1, n], [1, n− k], . . . , [k+1, n]}.
If k is even, the signed cardinality of each element of this orbit is 0. If k

is odd, the signed cardinality alternates between ±1. As the orbit has even

size n + 2, the sum of the signed cardinality is n+2
2 (1 − 1) = 0. Thus, the

average of the signed cardinality is zero over all orbits of the form O([1, k])

for k < n/2 when n is even.

If n/2 is even, then signed cardinality of each element in the orbit

O([1, n/2]) = {[1, n/2], [2, n2+1], . . . , [n2+1, n]} is zero. If n/2 is odd, then the

signed cardinalities once again alternate between ±1 over the orbit of even

size n
2 + 1, and the average of the signed cardinality is 1

2(
n
2 + 1)(1− 1) = 0.

Thus, in all cases the average of the signed cardinality is 0.

Remark 3.19. Note, when n is odd the sum of the signed cardinalities over

the orbits of IC([n]) under rowmotion is always 1. Thus, as the orbits have

different sizes, the signed cardinality is not homomesic when n is odd.

Example 3.20. For ordinal sums of antichains with the following sequence

of antichain lengths, we tested the homomesy of the signed cardinality statis-

tic under rowmotion.

Homomesic Not homomesic

1, 1, 1, 1 2, 1, 1, 2
2, 2, 2, 2 2, 3, 3, 2
3, 3, 3, 3 1, 2, 1, 2, 1
1, 2, 2, 1 2, 2, 1, 1, 2, 2

1, 1, 2, 2, 1, 1 1, 2, 1, 2
1, 1, 3, 3, 1, 1 1, 1, 2, 1, 1
1, 3, 3, 1 2, 2, 2

1, 2, 1
1, 1, 1, 1, 1

Theorem 3.21. The signed cardinality statistic exhibits homomesy with

respect to rowmotion on the poset
⊕n

i=1m where n is even.
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Proof. Let P =
⊕n

i=1m where n is even. By Theorem 3.7 there are three
different types of orbits to consider: those consisting of interval-closed sets
containing only full antichains, those consisting of interval-closed sets con-
taining one partial antichain and possibly other full antichains, and the
orbits of size 2.

Case 1. Interval-closed sets containing only full antichains.

As in the proof of Theorem 3.7, we map our interval-closed set I =
[mi,mj ] to the interval-closed set [i, j] in [n]. By Lemma 3.6, this map
commutes with rowmotion and the average of the signed cardinality statistic
over the orbit of I = [mi,mj ] is just m times the average over the orbit
of [i, j] in [n]. By Proposition 3.18, we know that the signed cardinality
statistic is 0-mesic for all orbits in [n], thus it is alos 0-mesic for all orbits

with representatives of the form I = [mi,mj ] in P .

Case 2. Interval-closed sets containing one partial antichain and possibly
other full antichains.

By Theorem 3.2, the orbits of these interval-closed sets have the from

O
((

mi

k

))
=

{(
mi

k

)
,

[(
mi

k

)
,mi+1

]
,

[(
mi

k

)
,mi+2

]
, . . . , [x,mn], [m1, x],

. . . ,

[
mi−1,

(
mi

k

)]}
.

Elements of
(
mi

k

)
are all at rank i + 1. If i is odd, this rank is signed +1

and thus the signed cardinality of
(
mi

k

)
is k. Similarly, the m elements of

mi+1 all lie on rank i + 2, which when i is odd is signed −1, thus the

signed cardinality of [
(
mi

k

)
,mi+1] is (m − k) − m = −k. Continuing, we

find the signed cardinality of [
(
mi

k

)
,mi+2] is k −m +m = k, and so forth,

with the signed cardinalities alternating between ±k. If i is even, the signed
cardinalities alternate between ∓k. In either case, as we are summing over
an orbit of even size n, the average of the signed cardinality is zero.

Case 3. Orbits of size 2.

First consider the orbit {∅, P}. As n is even, we can pair the ranks of P

so the signed cardinality is
∑n/2

i=1(m−m) = 0.

Next, consider the orbits of the form {[
(
mi

k

)
,
(mj

l

)
], [
(
mi

k

)
,
(mj

l

)
]}. Recall

that the interval-closed sets in this orbit consist of a distinct minimal and
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maximal rank that are partially full (and all ranks between, if any, com-
pletely full). We break this into two cases depending on whether or not i
and j have the same parity.

If rank i and rank j have different parity, then the number of ranks
between them is even. Thus any of these ranks can be paired so their con-
tribution to the signed cardinality sums to 0. As the maximal and minimal
ranks toggle by taking the complement, the contribution of each over the
full orbit is (−1)im and (−1)jm respectively. As i and j differ in parity,
these cancel, resulting in an overall signed cardinality of 0.

If rank i and rank j have the same parity, then the number of ranks
between them is odd. We pair these except for the (j − 1)th rank, resulting
in an overall contribution of (−1)j−12m to the signed cardinality across the
orbit. As the maximal and minimal ranks toggle by taking the complement,
the contribution of each is (−1)im and (−1)jm respectively. As i and j have
the same parity, this totals to (−1)j2m, which cancels with (−1)j−12m,
resulting in an overall signed cardinality of 0.

4. Interval-closed sets of products of chains

Consider the Cartesian product [m] × [n] of chain posets [m] and [n]. Ele-
ments in [m] × [n] are the tuples {(a, b) | 1 ≤ a ≤ m, 1 ≤ b ≤ n}. For the
poset [2] × [n], we say that {(1, i) | 1 ≤ i ≤ n} is in the bottom chain and
that {(2, j) | 1 ≤ j ≤ n} is in the top chain. Similarly, one can take the
products of multiple chains [a1]× [a2]× · · · × [ak], whose elements are given
by tuples of length k.

Remark 4.1. We may interpret posets constructed as products of chains as
divisor posets. Let d = pe11 pe22 · · · pekk be the prime factorization of d. Then the
divisor poset of d is the product of chains poset [e1+1]× [e2+1]×· · · [ek+1].

For example, the divisor poset of 48 = 3∗24 is the poset [2]×[5]. The two
primes correspond to the two chains, and the number of elements in each
chain is one more than the exponent of the prime in the decomposition.

2031
2131

2231
2331

2431

2030
2130

2230
2330

2430
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4.1. Enumeration of interval-closed sets in products of two chains

In this section, we give a formula for the cardinality of IC([2] × [n]) (The-
orem 4.2), as well as for the number of interval-closed sets in IC([m]× [n])
that contain elements in each chain (Theorem 4.4). Finding an enumeration
formula for the cardinality of IC([a1]× [a2]×· · ·× [ak]), even for the product
of two chains, remains an open problem.

Theorem 4.2. The cardinality of IC([2]× [n]) for n ≥ 2 is 1+2(
(
n
2

)
+n)+

n+1
2

(
n+2
3

)
. This sum counts the following:

• the empty set ∅,
• non-empty intervals that are completely contained in either the top
chain or the bottom chain, and

• pairs made of one non-empty interval in each chain (these may or may
not form a single interval in the poset).

Proof. By construction, the largest antichain of [2] × [n] has size 2. There-
fore, any interval-closed set is made of at most two disjoint (incomparable)
intervals. For an interval-closed set made of two intervals, one of them must
belong to the top chain and one to the bottom chain. Given I ∈ IC([2]×[n]),
there are four cases:

1. I is empty.
2. I is a single interval, belonging to either the top or bottom chain.
3. I is a single interval with items in both the top and bottom chains.

These can be described as [(1, i1), (1, j1)]∪ [(2, i2), (2, j2)], with i1 ≤ j1,
i2 ≤ j2, i2 ≤ i1, and j2 ≤ j1, where the last two conditions ensure that
the set is an interval-closed set. Furthermore, to ensure that this is a
single interval, we need that i1 ≤ j2.

4. I is made of two disjoint intervals [(1, i1), (1, j1)] and [(2, i2), (2, j2)],
with i2 ≤ j2 < i1 ≤ j1.

In Case (2), the number of interval-closed sets is twice as much as the
number of non-empty interval-closed sets in the chain poset [n]. By Theo-
rem 3.1, this is 2(

(
n
2

)
+ n). For counting purposes, we can group Cases (3)

and (4) and count the number of quadruples (i1, j1, i2, j2) satisfying the con-
straint (i2 ≤ i1, j2 ≤ j1). Therefore, the number of interval-closed sets with
items in both the top and bottom chains is

∑
1≤i2,j1≤n

(j1 − i2 + 1)2 =

n∑
i2=1

n−i2+1∑
�=1

�2 =
n+ 1

2

(
n+ 2

3

)
,
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where the first equality is obtained by setting l = j1−i2+1, and last equality

is obtained by a straightforward computation.

Example 4.3. Let P = [2] × [7]. Then [(2, 2), (2, 6)] (below, left) is an

example of an interval-closed set that is made up of a non-empty interval

contained in the top chain, and [(1, 4), (1, 7)]∪ [(2, 2), (2, 6)] (below, right) is

an example of an interval-closed set made up of a single interval containing

elements from both the top and bottom chains.

The last proof leads us to ask if there is a way to enumerate interval-

closed sets of [m]× [n] that have elements in all m parallel chains. We show

that those are counted by the Narayana numbers by constructing a bijection

between order ideals of [m]× [n−1]× [2] and interval-closed sets of [m]× [n]

that have elements in all m chains, assuming n ≥ 2.

Theorem 4.4. Suppose n ≥ 2. The number of interval-closed sets of [m]×[n]

containing at least one element of the form (a, b) for each a ∈ [m] is the

Narayana number

N(n+m,n) =

(
n+m
n−1

)(
n+m−1
n−1

)
n

.

We use the following lemma in the proof of the theorem. Though the

result is known (see e.g. [17, A001263], [28, Thm. 7.8]), we include a short

proof.

Lemma 4.5. The number of order ideals of [m]×[n−1]×[2] is the Narayana

number N(m+ n, n).

Proof. Order ideals of [m] × [r] × [c] are enumerated as a ratio of binomial

coefficients in [22, Thm. 18.1]. By substituting r = n−1 and c = 2 we obtain
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that the number of order ideals of [m]× [n− 1]× [2] is(
m+n
n−1

)(
m+n−1
n−1

)(
n−1
n−1

)(
n

n−1

) =

(
m+n
n−1

)(
m+n−1
n−1

)
n

= N(m+ n, n),

where the Narayana number N(j, k) is given by

N(j, k) =
1

k

(
j

k − 1

)(
j − 1

k − 1

)
.

Proof of Theorem 4.4. In light of Lemma 4.5, it is sufficient to establish a
bijection between the order ideals of [m]× [n−1]× [2] and the interval-closed
sets of [m]× [n] that contain at least one element of the form (a, b) for each
a ∈ [m].

To do so, we use Proposition 2.5, that describes an interval-closed set
I as a pair of disjoint antichains (Max(I),Floor(I)), in which Floor(I) is
strictly below Max(I). Then the interval-closed set is the difference of the
order ideals generated by Max(I) and Floor(I).

Let J be an order ideal of [m] × [n − 1] × [2], and define A1 to be the
antichain of maxima of J in the restriction of the poset to the elements
with 1 as their last coordinate. Similarly, define A2 to be the antichain of
maxima of J in the restriction of the poset to the elements with 2 as their last
coordinate. The pair (A1, A2) completely defines J . Because J is an order
ideal, if (a, b, 2) ∈ A2, then an element (a, c, 1) can belong to A1 only if c ≥ b.
Therefore, the antichain defining J has exactly one element of each of the
forms (a, b, 2) and (a, c, 1) for each a ∈ [m] and for some c ∈ {0, . . . , n− 1},
b ∈ {0, . . . , c}. (Here we write (x, 0, y) to say that there is no element of J
with first coordinate x and last coordinate y.)

Consider the values (a, b, 2) and (a, c, 1) defining the contours of J . We
claim that we can build an interval-closed set of [m] × [n] using them. Fix
a ∈ [m] and consider (a, b, 2) and (a, c, 1) that are at the top of the antichains
in J . Then, the set of elements {(a, x) | b < x ≤ c + 1} forms a non-empty
interval-closed set of [m] × [n]. Furthermore, from Proposition 2.5 we may
construct an interval-closed set I such that Max(I) = {(a, x+1) | (a, x, 1) ∈
A1} and Floor(I) = {(a, y) | (a, y, 2) ∈ A2}. This interval-closed set has
elements of the form (a, b) for each a ∈ [m]. Let the map just described be
denoted as ψ, that is, ψ(J) = I.

Similarly, one may construct the inverse map as follows. Given an in-
terval-closed set I of [m]× [n] that has elements of the form (a, b) for each
a ∈ [m], we use Proposition 2.5 to translate it into two antichains Max(I)

For the author's personal use only.

For the author's personal use only.



Toggling, rowmotion, and homomesy on interval-closed sets 519

and Floor(I). Then, an order ideal of [m] × [n − 1] × [2] is defined by all
the elements below {(a, x − 1, 1) | (a, x) ∈ max(I)} ∪ {(a, y, 2) | (a, y) ∈
Floor(I)}. This map is clearly the inverse of ψ. An example of this bijection
is given in Example 4.6.

Finally, using Lemma 4.5, the number of interval-closed sets of [m]× [n]
containing at least one element of the form (a, b) for each a ∈ [m] is the
Narayana number N(n+m,n).

Example 4.6. We illustrate the bijection with a small example, namely, an
instance of the bijection map ψ from an order ideal of [2] × [2] × [2] to an
interval-closed set of [2]×[3] with elements in both the top and bottom chain.
We start with order ideal J = {(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), (2, 1, 1)} of
[2]× [2]× [2]. The bijection requires us to identify the maximal elements of
the restriction of J to items with last coordinate being respectively 1 and 2:
here, these are A1 = {(1, 2, 1), (2, 1, 1)} and A2 = {(1, 2, 2)}. Therefore,
for each pair (a, d) ∈ {1, 2} × {1, 2}, we identify the elements of the form
(a, x, d) in A1 or A2. Here, these are {(1, 2, 1), (1, 2, 2), (2, 1, 1), (2, 0, 2)}. The
description of the bijection then yields that

ψ(J) = Δ
({

(1, 3), (2, 2)
})

−Δ(
{
(1, 2), (2, 0)

}︸ ︷︷ ︸
Δ({(1,2)})

=
{
(1, 3), (2, 1), (2, 2)

}
.

Hence, ψ(J) = {(1, 3), (2, 1), (2, 2)} as in Figure 11.
For the inverse direction, we start with I = {(1, 3), (2, 1), (2, 2)}. Then,

Max(I) = {(1, 3), (2, 2)}, and Floor(I) = {(1, 2)}. Hence,

ψ−1(I) = Δ
({

(1, 2, 1), (2, 1, 1), (1, 2, 2)
})

= J.

Unfortunately, Theorem 4.4 does not give enough information to enu-
merate all interval-closed sets in the poset [m] × [n]. We leave as an open
problem to count the number of interval-closed sets in products of two chains
and provide some data for small values of m+ n in Table 1.

4.2. Max minus min homomesy

Rowmotion on product of chains posets provided the setting in which one of
the first instances of the homomesy phenomenon (see Definition 2.24) was
discovered. Propp and Roby showed that the cardinality statistic on order
ideals of [m]× [n] exhibits homomesy under rowmotion [19]; this result was
extended to [m] × [n] × [2] by Vorland [31]. It is natural to ask whether
rowmotion on interval-closed sets of these posets also exhibits homomesy
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(1,1,1)

(2,1,1) (1,2,1) (1,1,2)

(2,2,1) (2,1,2) (1,2,2)

(2,2,2)

ψ−−→

(1,1)

(2,1)(1,2)

(2,2)(1,3)

(2,3)

Figure 11: The bijection ψ between order ideals of [2] × [2] × [2] and
interval-closed sets of [2] × [3] with elements in both the top and bot-
tom chain. Here, the order ideal of [2] × [2] × [2] illustrated is J =
{(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), (2, 1, 1)} (shown in red on the left), so
that ψ(J) = {(1, 3), (2, 1), (2, 2)} is an interval-closed set of [2] × [3] with
elements in both the top and bottom chain (shown in red on the right).

Table 1: Number of interval-closed sets in [m]× [n]

m
n

1 2 3 4 5 6 7 8

1 2 4 7 11 16 22 29 37
2 4 13 33 71 136 239 393 613
3 7 33 114 321 781 1,702 3,403 6,349
4 11 71 321 1146 3,449 9,115 21,743 47,737
5 16 136 781 3,449 12,578 39,614 111,063 283,243

for some statistic. In this section, we give such a homomesy result for the
[2] × [n] poset in Theorem 4.7 and conjecture an analogous statement for
[m]×[n]. The statistic exhibiting homomesy in this case is not the cardinality
statistic, but rather the number of maximal elements minus the number of
minimal elements of the interval-closed set.

Theorem 4.7. The number of maximal elements minus the number of min-
imal elements is 0-mesic under rowmotion on IC(P ), for P = [2]× [n].

Proof. Consider P = [2] × [n]. Given I ∈ IC(P ), we saw in the proof of
Theorem 4.2 that there are four types of interval-closed sets I:

1. I is empty.
2. I is a single interval, belonging to either the top or bottom chain.
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3. I is a single interval with items in both the top and bottom chains

of the form [(1, i1), (1, j1)] ∪ [(2, i2), (2, j2)], with i2 ≤ i1 ≤ j2 ≤
j1.

4. I is made of two disjoint intervals on each chain of the form [(1, i1),

(1, j1)] and [(2, i2), (2, j2)] with i2 ≤ j2 < i1 ≤ j1.

Let M(I) denote the number of maximal elements minus the number

of minimal elements of I. If I is in Case (1), I is the empty set, so clearly

M(I) = 0. If I is in Case (2), I is a single interval, so there is one maximal

and one minimal element. Thus, M(I) = 1 − 1 = 0. If I is in Case (4), I

consists of two disjoint intervals. So each interval contributes a maximal and

minimal element, resulting in M(I) = 2− 2 = 0.

Therefore, the only case we need study is Case (3), where I consists of

two intervals that overlap. We first examine how the number of maximal

and minimal elements changes depending on several subcases:

(3.1) If j1 = j2, then there is only one maximal element, j2.

(3.2) If j2 < j1, then there are two maximal elements, j1 and j2.

(3.3) If i1 = i2, then there is only one minimal element, i1.

(3.4) If i2 < i1, then there are two minimal elements, i1 and i2.

We consider all the ways to pair (3.1)/(3.2) with (3.3)/(3.4). We have

M(I) = 0 when either j1 = j2 and i1 = i2 ((3.1) + (3.3)) or j1 > j2 and

i1 > i2 ((3.2) + (3.4)), M(I) = 1 when j2 < j1 and i1 = i2 ((3.2) + (3.3)),

and M(I) = −1 when j1 = j2 and i2 < i1 ((3.1) + (3.4)).

We finish the proof by showing that whenever you encounter an I of

the form ((3.2) + (3.3)), then repeated applications of rowmotion result

in a (possibly empty) sequence of interval-closed sets contributing 0 to the

statistic and finally an interval-closed set contributing −1 to the statistic.

In this way, we can pair any element in the orbit that contributes +1 to an

element that contributes −1.

Consider I ∈ IC(P ) of the form [(1, i1), (1, j1)] ∪ [(2, i2), (2, j2)] with

j2 < j1 and i1 = i2. If i1 �= n, then performing rowmotion results in the

interval-closed set [(1, i1 + 1), (1, j1 + 1)] ∪ [(2, 1), (2, j2 + 1)]. Performing

rowmotion again results in sliding each interval up its chain by one ele-

ment. This continues until the interval on the bottom chain reaches the

top.
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Row−−−→ Row−−−→

At this point, we must consider two cases. If the interval on the top chain
is more than one away from the top of the chain, then performing rowmotion
slides that top interval up by one. It removes elements from the top of the
bottom chain until the maximal element in the bottom chain is at the same
height as that on the top chain. It also removes the bottom most element of
the bottom chain. More formally, if I ′ = [(1, i′1), (1, n)]∪ [(2, i′2), (2, j

′
2)] with

i′1 = j′2 and j′2 < n − 1, then Row(I ′) = [(1, i′2 + 1), (1, j′2 + 1)] ∪ [(2, i′2 +
1), (2, j′2 + 1)]. Thus the resulting interval closed set is of the form ((3.1) +
(3.4)) and the number of maximal elements minus the number of minimal
elements is 1− 2 = −1

Row−−−→

If the interval on the top chain is one away from the top of the chain,
then performing rowmotion results in sliding the interval on the top chain
up by one element and removing an element from the bottom of the in-
terval on the bottom chain. Thus, the resulting interval-closed set is of the
form [(1, i′1 + 1), (1, n)] ∪ [(2, i′2 + 1), (2, n)] with i′1 > i′2, and the number
of maximal elements minus the number of minimal elements is 1 − 2 =
−1.
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Row−−−→

Note that if the original I has i1 = n, then one of those two cases applies
and one instance of rowmotion returns an interval-closed set that contributes
−1 to the statistic.

Therefore, for any I ∈ IC(P ), the orbit under rowmotion consists of
elements that either contribute 0 to the statistic or elements that contribute
+1 that can be paired with elements that contribute −1. If instead you start
with the element that contributes −1, use the inverse of rowmotion and the
reverse of the above argument to reach the required element that contributes
+1.

Example 4.8. Consider P = [2]× [5] and I = [(1, 2), (1, 3)]∪ [(2, 2), (2, 2)].
In Figure 12, we give the orbit of I with the number of maximal elements
minus the number of minimal elements listed below each poset.

1

Row−−−→

0

Row−−−→

0

Row−−−→

−1

Row−−−→

1

Row−−−→

0

Row−−−→

−1

Row−−−→

0

Figure 12: An orbit showing the number of maximal elements minus the
number of minimal elements.
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It is reasonable to ask if Theorem 4.7 can be generalized to all products

of chains. For products of two chains, we tested the following conjecture on

all posets [m]× [n], with m+ n ≤ 12.

Conjecture 4.9. The number of maximal elements minus the number of

minimal elements is 0-mesic under rowmotion on IC(P ), for P = [m]× [n].

Remark 4.10. Conjecture 4.9 is the best possible such homomesy result,

as this statistic does not exhibit homomesy under rowmotion for either of

the posets [2]× [2]× [5] or [2]× [2]× [2]× [2].

Remark 4.11. Theorem 4.7 is the only positive homomesy result we found

on products of chains. We give here a list of some statistics we determined are

not homomesic under rowmotion on interval-closed sets. For each statistic

we provide an example of a poset for which the statistic has different orbit

averages.

• Cardinality: Unlike the case of rowmotion on order ideals [19, 31],

cardinality (the number of elements in an interval-closed set) is not

homomesic for rowmotion on interval-closed sets. Counter-example:

[2]× [2].

• Signed cardinality: This is the number of elements of an interval-closed

set at even ranks minus the number of elements at odd ranks. Counter-

examples: [2]× [4], [4]× [5], and [2]× [2]× [3]. Note that this statistic

is homomesic for rowmotion on order ideals of the Type A minuscule

poset [11].

• Number of maximal (respectively, minimal) elements: Unlike what is

known for order ideals [19], this statistic is not homomesic for rowmo-

tion on interval-closed sets. Counter-example: [2]× [2].

• Toggleability for any x /∈ {1, n} (as explained in Remark 2.27).

Counter-example: [2]× [2].

The reader may notice that many statistics are not even homomesic for

the smallest non-trivial product of chains poset ([2]×[2]); for these statistics,

we found several larger counter-examples as well. In the case of the signed

cardinality statistic, whose smallest counter-examples are much larger, we

offer the following conjecture. We tested this conjecture for all posets with

at most 30 elements:

Conjecture 4.12. If m = 2 or m = 3, then the signed cardinality statistic

is 0-mesic under rowmotion on interval-closed sets of [m] × [n] whenever

m+ n− 1 is even.
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Many statistics that exhibit homomesy with respect to rowmotion on

order ideals also exhibit the cyclic sieving phenomenon [20]. For each statis-

tic studied in this paper and for the diamond poset, we used SageMath to

check for occurrences of the cyclic sieving phenomenon for the triplets made

of the set of interval-closed sets, the statistic generating function, and the

action of rowmotion, but did not find any. Since the diamond poset is both

an ordinal sum of antichains and a product of chains, there is no occurrence

of the phenomenon with a statistic from this paper and for either family

of posets studied here. It would be interesting to find an instance of this

phenomenon involving interval-closed sets.
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