Rowmotion on interval-closed sets

Jennifer Elder, Nadia Lafrenière, Erin McNicholas, Jessica Striker, Amanda Welch

CAAC 2024
UQAM, January 26, 2024

Posets

A poset is a partially ordered set. Here, we study finite posets.
We draw posets using their cover relations, that appear in a directed graph, called the Hasse diagram.

The divisors lattice

Order ideals
An order ideal of a poset is a subset I such that if x in I and $y \leq x$, then $y \in I$.

Proposition

There is a bijection between order ideals and antichains.

Rowmotion: classical version

Rowmotion is a bijection on order ideals of posets.

- Global action: order ideal spanned by the minima of the complement
- Local action: toggling top-to-bottom

Interval-closed sets

An interval-closed set of a poset P is a subset I of P such that for all $x, y \in I, z \in I$ for all $x \leq z \leq y$.
Order ideals and order filters are interval-closed sets, but there are many more.

Proposition

There is a bijection between interval-closed sets and pairs of antichains such that one is fully below the other.

Interval-closed sets

An interval-closed set of a poset P is a subset I of P such that for all $x, y \in I, z \in I$ for all $x \leq z \leq y$.
Order ideals and order filters are interval-closed sets, but there are many more.

Problem (Open, for the most part)
How many interval-closed sets does a poset have?

Rowmotion on interval-closed sets

We define rowmotion on ICS by toggling from top to bottom:

$\xrightarrow{\text { Row }}$

Problem
 Is there a global description of rowmotion?

Rowmotion as a global action

Theorem (Elder, L., McNicholas, Striker, Welch)
Rowmotion on an interval-closed set I is described globally as

$$
\begin{aligned}
& \operatorname{Row}(I)= \operatorname{Inc}(I) \cup\left(\Delta \operatorname{Inc}_{I}(\operatorname{Ceil}(I))-(I \cup \Delta \operatorname{Ceil}(I))\right) \\
& \cup(\Delta \operatorname{Ceil}(I)-\Delta(\operatorname{Min}(I) \cap \Delta \operatorname{Ceil}(I))),
\end{aligned}
$$

where $\operatorname{Inc}(I)$ is the set of elements incomparable with I, and the ceiling is the set of the minimal elements not in I and above elements of I.
$\Delta(I)$ is the order ideal spanned by I.

Rowmotion as a global action
Theorem (Elder, L., McNicholas, Striker, Welch)
Rowmotion on an interval-closed set I is described globally as

$$
\begin{aligned}
& \operatorname{Row}(I)= \operatorname{Inc}(I) \cup\left(\Delta \operatorname{Inc}_{I}(\operatorname{Ceil}(I))-(I \cup \Delta \operatorname{Ceil}(I))\right) \\
& \cup(\Delta \operatorname{Ceil}(I)-\Delta(\operatorname{Min}(I) \cap \Delta \operatorname{Ceil}(I))),
\end{aligned}
$$

where $\operatorname{Inc}(I)$ is the set of elements incomparable with I, and the ceiling is the set of the minimal elements not in I and above elements of I.
$\Delta(I)$ is the order ideal spanned by I.
This alternate definition speeds up the computations a lot!

Rowmotion as a global action
Example:

$$
\begin{aligned}
\operatorname{Row}(I)= & \operatorname{Inc}(I) \cup(\Delta \operatorname{Inc}(\operatorname{Ceil}(I))-(I \cup \Delta \operatorname{Ceil}(I))) \\
& \cup(\Delta \operatorname{Ceil}(I)-\Delta(\operatorname{Min}(I) \cap \Delta \operatorname{Ceil}(I))),
\end{aligned}
$$

$$
\begin{aligned}
& \text { red }=I \\
& \text { blue }=\operatorname{Row}(I)
\end{aligned}
$$

\diamond Incomparable with I
\square Incomparable with \square
\triangle Ceiling

Ordinal sums of antichains

Definition

Given two antichains $\mathbf{a}_{\mathbf{1}}$ and $\mathbf{a}_{\mathbf{2}}$, their ordinal sum $\mathbf{a}_{\mathbf{1}} \oplus \mathbf{a}_{\mathbf{2}}$ is the poset in which $x \leq y$ for all pair $(x, y) \in \mathbf{a}_{1} \times \mathbf{a}_{2}$.

$\mathbf{2} \oplus \mathbf{3} \oplus \mathbf{1} \oplus \mathbf{4}$ and the stacked diamond

$$
D(5,2)=\mathbf{1} \oplus \mathbf{2} \oplus \mathbf{1} \oplus \mathbf{2} \oplus \mathbf{1} .
$$

Enumeration of ICS on ordinal sums of antichains

Theorem (Elder, L., McNicholas, Striker, Welch)
The number of ICS in $\mathbf{a}_{\mathbf{1}} \oplus \mathbf{a}_{\mathbf{2}} \oplus \ldots \oplus \mathbf{a}_{\mathbf{n}}$ is $1+\sum_{1 \leq i \leq n}\left(2^{a_{i}}-1\right)+\sum_{1 \leq i<j \leq n}\left(2^{a_{i}}-1\right)\left(2^{a_{j}}-1\right)$.

Enumeration of ICS on ordinal sums of antichains
Theorem (Elder, L., McNicholas, Striker, Welch)
The number of ICS in $\mathbf{a}_{\mathbf{1}} \oplus \mathbf{a}_{\mathbf{2}} \oplus \ldots \oplus \mathbf{a}_{\mathbf{n}}$ is

$$
1+\sum_{1 \leq i \leq n}\left(2^{a_{i}}-1\right)+\sum_{1 \leq i<j \leq n}\left(2^{a_{i}}-1\right)\left(2^{a_{j}}-1\right) .
$$

+ more specific results for:
- repeated antichains of the same size
- altered stacked diamonds

Rowmotion orbits on ordinal sums of antichains

Theorem (Elder, L., McNicholas, Striker, Welch)
Let $n \geq 3$. The interval-closed sets of $\mathbf{a}_{\mathbf{1}} \oplus \mathbf{a}_{\mathbf{2}} \oplus \ldots \oplus \mathbf{a}_{\mathbf{n}}$ have rowmotion order $2 n(n+2)$ when n is odd and $n(n+2) / 2$ when n is even.

+ We know a complete description of its rowmotion orbit structure.

Rowmotion as a global action on ordinal sums of antichains

Theorem (Elder, L., McNicholas, Striker, Welch)
Let P be an ordinal sum of antichains. Then rowmotion on the ICS I is either

- the complement of I, if I is either empty, contains all of the top antichain, or is a subset of the top antichain.
- the difference of the order ideals spanned by the ceiling of I and the minima of I.

Products of chains

Definition

The divisors lattice of n is the poset containing all the divisors of n, in which $a \leq b$ if a divides b. If n admits a prime factor decomposition $p_{1}^{a_{1}} \ldots p_{k}^{a_{k}}$, the divisors lattice is equivalent to the product of chains $\left[a_{1}+1\right] \times \ldots \times\left[a_{k}+1\right]$.

Example

The divisors lattice of $72=2^{3} \cdot 3^{2}$ is [3] $\times[4]$.

"Classical" (order ideal) rowmotion on product of chains
Order-ideal rowmotion on products of two chains $[a] \times[b]$ has order $a+b$. It has the same orbit structure as the promotion operation.
Promotion is equivalent to rotation of a word of length $a+b$.

$0100110 \quad \xrightarrow{\text { rotation }}$

1001100

ICS-rowmotion on products of chains

Problem (Open)

What is the order of rowmotion? The orbit structure?

210
$\left[2^{1}, 5^{3}, 6^{1}, 7^{4}, 10^{2}\right]$

1144
$\left[2^{1}, 4^{2}, 8^{7}, 26^{1}, 44^{1}\right]$

Enumeration of ICS on products of chains

Problem

How many ICS are there in the product of chains $[a] \times[b]$?
Theorem (Elder, L., McNicholas, Striker, Welch)

- The number of ICS of $[2] \times[n]$ is

$$
1+2\left(\binom{n}{2}+n\right)+\frac{n+1}{2}\binom{n+2}{3} .
$$

- The number of interval-closed sets of $[a] \times[b]$ with at least one element in each of the a chains is in bijection with the order ideals of $[a] \times[b-1] \times[2]$, and is thus counted by the Narayana number $N(a+b, b)$.

Joel Brewster Lewis found a generating function for the number of ICS of $[a] \times[b]$.

Further questions: other posets

There are plenty of other posets that we have not investigated:

The number of interval-closed sets is A367316 for the type A_{n} root poset and A 369313 for the boolean lattice of dimension n.

Further questions and open problems

Enumeration problems:

- Count the number of ICS for various posets

Dynamics problems:

- Give orbit structure of rowmotion for each of these posets
- Homomesic statistics? We got conjectures in our paper on \#max-\#min and signed cardinality, and we proved some results regarding \#max-\#min and toggleability.

Resources

Interested in working on these problems? We got resources!

Toggling, rowmotion and homomesy on interval-closed sets

ArXiv:2307.08520; To appear in Journal of Combinatorics

OEIS sequences A001263, A367109 A367316 and A369313

FindStat statistic 1909: The number of interval-closed sets of a poset

A worksheet with all our SageMath code is available on CoCalc (link in the paper)

Thank you!

